
JCL

Page 1 of 80
(Company Confidential)

Version 3.1
28th May 2003

JCL

TABLE OF CONTENTS

1 INTRODUCTION ... 5

1.1 WHAT IS JCL? ... 5
1.2 PROCESSING OF JCL .. 6

2 JCL SYNTAX .. 9

2.1 SYNTAX RULES ... 9

3 JOB STATEMENT ... 11

3.1 ACCOUNTING INFORMATION PARAMETER: .. 11
3.2 PROGRAMMER’S NAME: ... 12
3.3 MSGLEVEL PARAMETER: .. 12
3.4 THE MSGCLASS PARAMETER: .. 13
3.5 THE CLASS PARAMETER: ... 14
3.6 THE PRTY PARAMETER .. 15
3.7 THE TIME PARAMETER .. 15
3.8 THE REGION PARAMETER .. 16
3.9 THE ADDRSPC PARAMETER .. 17
3.10 THE NOTIFY PARAMETER ... 17
3.11 THE RESTART PARAMETER .. 18
3.12 THE TYPRUN PARAMETER .. 20

4 THE EXEC STATEMENT ... 21

4.1 THE PGM PARAMETER ... 21
4.2 THE REGION PARAMETER ... 22
4.3 THE TIME PARAMETER .. 22
4.4 THE ADDRSPC PARAMETER .. 23
4.5 THE ACCT PARAMETER ... 24
4.6 THE PARM PARAMETER ... 24
4.7 THE COND PARAMETER ... 26

4.7.1 The COND Parameter in the JOB statement. .. 26
4.7.2 The COND Parameter in the EXEC statement ... 28

5 THE DD STATEMENT .. 31

5.1 THE DSN PARAMETER .. 31
5.2 THE DISP PARAMETER ... 32
5.3 THE UNIT PARAMETER .. 37
5.4 THE VOL PARAMETER .. 39
5.5 THE SPACE PARAMETER .. 40
5.6 THE LABEL PARAMETER ... 42
5.7 THE DCB PARAMETER .. 43
5.8 INSTREAM DATA .. 48
5.9 THE SYSOUT PARAMETER ... 49
5.10 CONCATENATION ... 50
5.11 DUMMY PARAMETER ... 51
5.12 THE JOBLIB DD STATEMENT .. 52
5.13 THE STEPLIB STATEMENT ... 52
5.14 STORAGE DUMP .. 53

6 PROCEDURE ... 55

6.1 RULES FOR EXEC STATEMENT OVERRIDING .. 56
6.2 RULES FOR DD STATEMENT OVERRIDING .. 56
6.3 SYMBOLIC PARAMETERS AND SYMBOLIC OVERRIDES .. 59
6.4 THE PROC STATEMENT ... 61
6.5 IN-STREAM PROCEDURES ... 61

7 UTILITY ... 63

Page 2 of 80
(Company Confidential)

JCL

7.1 IEFBR14 UTILITY ... 63
7.2 IEBGENER UTILITY .. 64
7.3 SORT UTILITY .. 65
7.4 APPENDIX-A ... 80

Page 3 of 80
(Company Confidential)

JCL

Day-Wise Schedule
Day 1 Theory Introduction to JCL

 Syntax of JCL
 JOB statement
 EXEC statement
 COND parameter
 DD statement

 DSN, DISP, SPACE, UNIT, VOLSER, DCB

Day 1 Lab Assignment 1,2,3

Day 2 Theory DD statement contd….
 JOBLIB, STEPLIB,

Storage Dump
 SYSUDUMP

 SYSMDUMP
 SYSABEND

Procedures…
Cataloged, regular overrides

Day 2 Lab Assignment 4,5,6,7,8

Day 3 Theory Procedures contd (….)
Instream
Symbolic parameter substitutions
Utilities

 -IEFBR14
 -IEBGENER
 -SORT

Day 3 Lab Assignment 9,10,11,12.13

Page 4 of 80
(Company Confidential)

JCL

1 Introduction
1.1 What is JCL?

There are three types of work that a user can perform under MVS/XA:
• Time Sharing
• Online
• Batch

The first two appear very much alike to the user. Under both, the user logs on, using a
userid and password and begins to work interactively. A transaction is entered and a
response received, normally in very few seconds. A unit of work for both is called a
session.

Batch processing is not interactive. It is deferred execution. It can be executed as soon
as it is submitted or much later on. Also the execution of batch work can be time
consuming as compared to interactive which is usually very quick.

Job Control Language (JCL) must be used in order to submit a batch work.

Job Control Language (JCL) is a means of communicating with the IBM 3090 MVS
Operating System. JCL statements provide information that the operating system
needs to execute a job. The unit of batch work is a “job”.

A job is something that you want to accomplish with the aid of a mainframe
computer, e.g. copy a data set, execute a program, or process multiple job steps. You
need to supply the information that the job requires and instruct the computer what to
do with this information. You do this with JCL statements. A job can be defined as
one or more steps up to 255. A job step consists of statements that control the
execution of a program or procedure, request resources, and define input and/or
output.

This includes information about:
• The program or procedure to be executed
• Input data
• Output data
• Output Reports

Page 5 of 80
(Company Confidential)

JCL

 Fig 1.1 Fig 1.2

How do the two methods differ?

• Steps within a JOB have a predefined sequence
• Steps within a JOB cannot multiprogram with one another
• A Step within a JOB can interrogate the status of a preceding step’s execution

and determine whether to execute or not

In Fig 1.1 a job is shown with three steps. STEP1 executes program EDIT, STEP2
executes program SORT and STEP3 executes program REPORT. In Fig 1.2 the same
three steps appear but as part of three different jobs. Both steps achieve the same goal
but the two do not work the same way. The steps in Fig 1.1 must be executed in
sequence and the execution of steps STEP2 and STEP3 can be controlled based on
what happened to preceding steps. The steps in Fig 1.2 are within different jobs and
can be executed concurrently (although sequential execution can be forced), and there
is no communication between jobs. If these steps require sequential execution and
execution control then the setup in Fig 1.1 is better. If not then the one according to
Fig 1.2 is better.

1.2 Processing of JCL

Input stream is JCL and optionally, data, which comes together with JCL (80-byte
records), known as SYSIN data or input stream data. Disk is the most common device
used for submitting jobs.

JES2 or JES3 reads the JCL in the input stream and places it on the spool pack. JCL
goes through one or more level of syntax checking. SYSIN data, if any, is also read in
and placed on the spool pack by JES2 or JES3. If the JCL is syntactically correct it is
queued for execution in Job Queue.

An initiator must be available to execute the job. An initiator is a set of routines
whose sole function is to select a job from job queue and execute it under its control.
During the job’s execution SYSIN data, if any will be read in and print-lines, if any
will be placed on spool pack for later printing. There are several initiators available,
and each one performs the same function for a different job. The number of initiator
varies according to the hardware configuration and the amount of concurrent time-
sharing and on-line activity on the same system.

Page 6 of 80
(Company Confidential)

JCL

Fig 1.3

The above figure shows the working of an initiator. The initiator goes to the Job
Queue and asks for a Job. If an appropriate job exists, it takes its JCL and goes
through the following processes:

• Job initiation: One of the main functions of this process is to ensure that no data
sets needed by this job are reserved by other jobs and, therefore, unavailable. If
some data sets are reserved, it places itself in a wait state and informs the operator.
If not, the initiator takes the first step of the job and goes to the next process, Step
initiation.

• Step initiation: This process will check the COND parameter of the Exec as well
as the JOB statement.

• Allocation: Next comes the allocation process (or Allocation routines), which
allocates the required devices for all DD statements in the step.
If the Allocation routines are successful, Program execution begins.

• Program execution: The program to be executed is frequently written by the user
(it can also be written by a vendor) and it is normally the most time consuming
part of a step’s entire process. Sysin records saved during reading process will be
read in by the program. Sysout (print-line) records, if any, will be saved on the
spool pack for later printing or viewing.

• Step Termination: The step termination process is entered when the program
execution terminates normally or abnormally (ABEND). This process deallocates
all devices allocated in the allocation process. Devices containing “passed
datasets” will not be de-allocated.
Performs disposition processing. It attempts to satisfy what is requested in the
normal or abnormal field of the DISP parameter (KEEP,DELETE,CATLG), or
pass the dataset).

Page 7 of 80
(Company Confidential)

JCL

Verifies that all datasets opened were closed during the program’s execution and
closes those that were not. If there is another step in the job, the entire Step
initiation/Allocation/Program Execution/Step Termination sequence is repeated.

• Job Termination: When the last step in the job has been executed, the Job
Termination process is given control. This process is responsible for tying up
loose ends. For example, when a dataset is passed and not received, Job
termination will determine the ultimate status of passed data set.

Page 8 of 80
(Company Confidential)

JCL

2 JCL Syntax
2.1 Syntax Rules

All JCL statements begin with two slashes, //, in the first two positions (except /*).
All positions of a line, from 1 to 71 (included), can be used for coding a JCL
statement. Position 72 is used (rarely) for imbedded comment continuation, and
positions 73 through 80 are used for numbering purposes.

With the exception of the null (//), delimiter (/*), comment (//*), all other statements
follow the same general format:

//name operation parameter1,parameter2 [comment]

• Name: Every JCL statement can or must have a name. The name should not
exceed 8 characters

• Operation: The operation field follows the name field and specifies the
statement’s function. Delimiter, comment and null statements do not have an
operation field. E.g. JOB, EXEC, DD, PROC, PEND, or OUTPUT. One or more
blanks must follow the operation

• Parameter: The parameter field consists of one or more parameters, separated by
commas. No imbedded blanks between parameters are permitted
Parameters are broadly classified into 2 categories viz. Positional and Keyword
A positional parameter is identified by its position relative to other parameters in
the operand field

Rule 1: All positional parameters are coded first in the operand field and in their
proper sequence.

E.g.: p1,p2,p3
 p1,p3,p2 illegal because they are not in sequence.

Rule 2: A keyword parameter is identified by a keyword followed by an equal sign
(=) and variable information. A keyword parameter follows positional parameter and
can be coded in any order.

E.g. : p1,p2,p3,k1=,k2=,k3=
 p1,p2,p2,k3=,k2=,k1=
Both are valid.

Rule 3: The absence of positional parameter is denoted by a comma (,) coded in its
place, except when the last or remainder of the positional parameter is not present.
The placeholder commas do not need to be coded in this case.

E.g.: p1,,p3,k1=,k2=,k3= place holder comma required.
 p1,k1=,k2=,k3= place holder comma not required.

Page 9 of 80
(Company Confidential)

JCL

Rule 4: Both positional parameters and variable information for keyword parameters
may be composed of subparameters. The subparameters may be either positional or
keyword. Subparameters must be coded as a list. The list must be enclosed in
parentheses unless only one subparameter is coded. When only one subparameter is
coded the parentheses are optional.

e.g. : p1,(sp1,sp2),p3,k1=(sk1,sk2),k2=,k3=
p1,(sp1),p3,k1=(sk1),k2=,k3=
Or p1,sp1,p3,k1=sk1,k2=,k3=

• Comments: are separated from the parameters by a blank. The comment field
begins in the position after the space that marks the end of parameters field and
ends in column 71. MVS ignores what you code here.

Rules for Continuation: The JCL statement can be continued in a simple way. The
statement must be interrupted at a comma. This means that the last valid character of
the line must be a comma followed by at least one blank. Then the statement can be
continued into the next line by coding two slashes at the beginning of the line and
continuing the parameter field starting anywhere between positions 4 and 16 (4 and
16 included). Note that, the comma that indicates continuation, is not an extraneous
character but part of the statement.

E.g. 2.1 Examples of valid continuation

//DD1 DD DSN=DA0001T.EMPFILE,DISP=(NEW,CATALG,DELETE),
// UNIT=SYSDA,SPACE=(TRK,(5,1)),
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=800)

Page 10 of 80
(Company Confidential)

JCL

3 Job Statement
A JOB statement must be at the beginning of every job submitted to the system for
execution. A JOB statement must have a name. The absence of a job name will result
in a JCL error. The JOB statement identifies job to the O/S with the job name
operand. There are three possible delimiters for a job during a reading process:

• Another job statement in the input stream. It signals the end of (reading) one
JOB and the beginning of (reading) another

• A null statement. Following a null statement all JCL statements except a JOB
statement will be ignored

• End-of-file on the reading device, meaning there are no more statements to be
read in

The format of the JOB statement is:

//jobname JOB parameters

E.g.
//DA0001TA JOB parameters

The job name cannot exceed 8 characters and is usually the userid (loginid). Loginid
is generally 7 characters, so you need to add a suffix else the system prompts you to
enter the character when a job is submitted to the system for execution.

When a job is submitted to the system, a job number is also assigned so that the job
can be further identified. This way jobs with the same name can be uniquely
identified. Jobs with the same name cannot execute simultaneously. If several jobs
with the same name are submitted they execute sequentially even if additional jobs
could be executing. Jobs waiting to run because of this time conflict are shown in hold
status.

The rest of the JOB statement contains positional parameters followed by keyword
parameter.

3.1 Accounting Information Parameter:

It is a positional parameter. If present (it normally is), it must be the first in the
parameter field. It can have a maximum of 142 characters (including parentheses and
commas but not apostrophes). It is used to tie the resources used by the job to the
appropriate account.

//jobname JOB ([account-number][,additional-accounting-information]),parameters

The account-number is an alphanumeric field from 1 to 4 characters long (many
installations permit the use of more than 4 characters).
Additional-accounting-information is installation dependent. Many of the fields are
not very important and are not often used.

Page 11 of 80
(Company Confidential)

JCL

E.g.:
//DA0001TA JOB LA2719,parameters

LA2719 is the account number for the training dept. This varies from one project to
another.

Remark: An installation has the option of making the account number mandatory and
most installations do. If so, its absence will cause a JCL error.

If the account number is incorrectly specified, in this case its not JCL error. However
when job is submitted to the system for execution, we get the message “JOB NOT
RUN” in the SYSOUT.

3.2 Programmer’s Name:

Following the accounting information parameter, another positional parameter, the
programmer’s name can be coded. The installation determines if this parameter is
required or not. If required, it must be coded immediately after the accounting
information, and its omission will cause a JCL error. The programmer’s name cannot
exceed 20 characters. If it contains any special characters other than a hyphen and a
period in the middle of the beginning (but not at the end) of the name, the name must
be enclosed in apostrophes. The apostrophes are not added to the length of the name.

 If a name contains an apostrophe (e.g., D’COSTA), two apostrophes must be coded.
They count as one character in the length of the name.

E.g.:
//DA0001TA JOB LA2719,Sheela,parameters

 //DA0001TA JOB LA2719,’D’’COSTA’,parameters

Note: Accounting information and Programmer’s name are the only two positional
parameters in the JOB statement, what follows after that is keyword
parameters.

3.3 MSGLEVEL Parameter:

This parameter specifies whether the submitted JCL and/or JCL-related messages
should be shown on the job’s output.

General syntax

MSGLEVEL=([jcl][,messages]) keyword parameter
jcl - 0, 1, or 2

0 - Only the JOB statement will be shown
1 - All JCL will be shown

• Instream
• Expanded cataloged procedures
• Symbolic parameter substitutions

Page 12 of 80
(Company Confidential)

JCL

2 - All JCL will be shown, but not expanded procedure listing.

messages – 0 or 1
0 - No messages will be shown i.e. information about step completion.
1 – All messages will be shown viz. allocation and termination messages.

The messages subparameter can be thought of as On (1) or Off (0)
The default in majority of the installations is (1,1).

Remark:
1. If the entire parameter or either of the two fields is omitted, an installation-defined

default is assumed.
 MSGLEVEL=1 ------------------ MSGLEVEL=(1,default)
 MSGLEVEL=(,1) ------------------ MSGLEVEL=(default,1)
 Parameter omitted ------------------ MSGLEVEL=(default,default)

2. If the job encounters an ABEND failure, the second field always defaults to 1 even

if coded as 0.

3.4 The MSGCLASS Parameter:

This parameter assigns a sysout class to the Job log. The job log consists of what is
what is known as system or JES datasets:

• JES2 or JES3 log
• JCL and its associated messages
• Allocation and Termination messages

MSGCLASS - indicates the format of output
 - Specifies output class for
 Job log (collection of all operations)
 List (collection of all printed output like compiled listing)

General Syntax

MSGCLASS=class keyword parameter

class - A character from A to Z or a number from 0 to 9 (in all 36 classes)

MSGLEVEL parameter indicates whether or not one wishes to print the JCL
statements and allocation messages. The MSGLEVEL can save paper. After a job is
debugged, there may be no need to print all the JCL and allocation messages each
time it runs. To reduce printing to a minimum, one may wish to MSGLEVEL=(0,0).

All datasets to be printed must have a class. This is normally called the output class,
sysout class or message class. Sysout datasets created by the executing programs are
assigned a class by the SYSOUT DD statement. After the job terminates, the sysout
datasets, which are saved on the spool pack, will be selected and printed by a JES2 or
JES3 component called a printer. There are several printers available, and each one is
assigned one or more sysout classes (from 1 to 36). The sysout class schedules a data

Page 13 of 80
(Company Confidential)

JCL

set to a printer in a similar way as a job class schedules a job to an initiator. The
sysout class can be thought of as a print-scheduling class.

Remark: If the MSGCLASS parameter is omitted, an installation-defined default will
be used.

3.5 The Class Parameter:

This parameter assigns a class to a job.

General Syntax

CLASS=jobclass keyword parameter
jobclass – A letter from A to Z or a number from 0 to 9 (in all 36 classes)

The job class affects job’s processing in these ways:
• When job is submitted, it is placed in an input queue where it waits to be

executed. Queues can be thought of as waiting lines for jobs. Each job class
has its own input queue

• Job waits in the input queue until it is selected by an initiator to be processed.
Each initiator is set to a list of job classes that it can select from

Simply put, Jobclass identifies the nature of the job:
- Short running or long running
- Resource utilization

Each installation group jobs that have like characteristics into classes. By segregating
jobs with similar characteristics, an installation can maintain a good mix of the jobs
running at a given moment. This maintains system throughput and efficient use of
resources.

For e.g. suppose the default CLASS is A

This Job statement
//DA0001TA JOB LA2719,PCS,MSGCLASS=A,MSGLEVEL=(1,1)

is equivalent to

//DA0001TA JOB LA2719,PCS,MSGCLASS=A,MSGLEVEL=(1,1),CLASS=A

Remark: Frequently, installations develop a testing class structure that favors short-
running jobs with minimal resource requirements and penalize long-running jobs with
heavy resource demands. This is achieved by assigning the class used by trivial jobs
to many initiators and class used by heavy jobs to a few. To keep people honest, the
CLASS parameter in a testing environment is often tied to several other parameters
such as TIME, PRTY, REGION, etc. For example, a job coding CLASS=A can be
given TIME=(0,5), PRTY=6. Note that the values assigned to these parameters are
not shown in the output. However, if any of these parameters were coded in the JOB
statement, they would be ignored.
Most installation assigns a default job class if the CLASS parameter is omitted.

Page 14 of 80
(Company Confidential)

JCL

3.6 The PRTY Parameter

This parameter determines the scheduling priority of a job in relation to other jobs in
the job input queue of the same class.

General Syntax

PRTY=priorty - keyword parameter
priorty – a number from 0 to 15 for JES2 or 0 to 14 for JES3

The PRTY parameter is used to define the job’s input class selection priority:
• The higher the number, the better (greater) the priority
• The PRTY parameter simply controls the job’s position in the input queue. It

has no affect on the job’s performance
• Jobs with higher priorities will be selected before job’s will lower priority
• A job’s priority does not affect its performance. Once the job is selected for

execution, the priority function is finished
• Two jobs having same job class and same priority will be executed in

sequence
• It is meaningless to compare the PRTY parameter of two jobs belonging to

different classes

Remark: This parameter is of seldom use in a testing environment. Since high
priority would be used by practically all users negating the very purpose the
parameter. Therefore, in most installation the PRTY, whether coded or not, will
default to an installation-defined value or will be supplied by the CLASS parameter.

3.7 The TIME Parameter

This parameter specifies the total amount of CPU time that all steps in a job can use
collectively.

General Syntax

TIME=([minutes][,seconds] | [1440]) keyword parameter

minutes - a number from 1 to 1439
seconds - a number from 1 to 59
1440 - The job will not be timed for CPU. Note that TIME=1440 is rarely used,

and most installation disallow its use in a testing environment. TIME=1440
should be used by an on-line system like CICS OR ADS/O.

When the TIME parameter is omitted, an installation-defined default will be used.
This default is usually very high and unlikely to cause an S322 ABEND failure unless
the program goes into an endless loop.

If the TIME parameter is also coded in the JOB statement, both will be in effect and
either can cause a S322 ABEND failure. It is not advisable to use them both.

Page 15 of 80
(Company Confidential)

JCL

CPU time is the amount of time that the computer devoted to the job after it was
selected for processing. It is not the amount of time it was in the machine.

TIME parameter puts an upper limit on the amount of CPU time that a job may use.

E.g.: TIME=(3,20). All the steps in the job are allowed collectively 3 minutes and 20
seconds of CPU time. If this amount is exceeded, the result will be a S322 ABEND
failure.

If the TIME parameter is coded using only minutes, seconds defaults to zero. For
example, TIME=5 is the same as TIME=(5,0).

If the TIME Parameter is coded using only seconds, minutes defaults to zero. For
example, TIME=(,6) is the same as TIME=(0,6).

The TIME parameter is intended almost exclusively for a testing environment and
should be coded to preempt the program going into CPU loop.

The TIME parameter can also be supplied by the CLASS parameter. When the TIME
parameter is omitted and the CLASS parameter does not supply it, the job will not be
timed for CPU time. However each step will be individually timed (TIME parameter
at EXEC statement or its installation-defined default), unless it contains TIME=1440.

Remark: It is possible for a job to get more CPU time than that is specified in the
TIME parameter by a maximum 10.5 seconds. This is due to the fact that the system
checks for violations every 10.5 seconds.

3.8 The REGION Parameter

This parameter specifies the limit of available storage for each of the steps in the job
within the job’s address space. i.e., the amount of storage the job is allocated. In other
words, it specifies the amount of storage needed by the step (within the job) with the
highest storage requirements.

General Syntax

REGION=value{K|M} keyword parameter

value – 1 to 2096128 if K (1024 bytes) is used. It should be an even number. If an
odd number is used it will be rounded off to the next higher even number.

value – 1 to 2047 if M (1024K or 1048576 bytes) is used. M is not available to
MVS/SP, only to MVS/XA and MVS/ESA.

When a job is selected by an initiator for execution, it is given an address space of 16
MB (minus what MVS/SP uses). In case of MVS/XA, job is given an address space of
2GB. And all of it is available to the job’s steps. However a step normally requires
only a small fraction of this huge storage, below the 16M line. An ordinary COBOL
or any other language program seldom needs more than 1000K. This is normally what
the value in the REGION parameter represents in the installations. Few jobs like

Page 16 of 80
(Company Confidential)

JCL

CICS, IMS, DB2 need storage above the 16M line. An ordinary batch job seldom has
such high requirements and, as a result confined to storage below the 16M line.
Storage availability below this line varies in different installations, but is generally
around 8MB in MVS/SP and around 9 MB in MVS/XA. Storage above the 16M line
can be acquired by coding a value higher than 16M. However, it may be restricted by
the installation to only those jobs that need it.

E.g. 1.
Assume REGION=1000K were coded in the JOB statement. All the steps in the job
are limited to this value. If more storage is needed, the usual result is S878 or S80A or
S804 ABEND failure. If one of these failures occurs, the user must increase the value
in the REGION parameter.

E.g. 2.
REGION=10M
When the amount of storage requested in the REGION parameter is higher than the
address space can provide, an S822 ABEND failure will result.

Note that for job run under MVS/SP, the entire address space is limited to 16M, of
which usually less than 8M is available to the user. In case of MVS/XA, the entire
address space is limited to 2G, of which usually around 9M is available to the user.

E.g. 3.
REGION=0K (or 0M) is coded the entire address space except for those areas used by
MVS/SP (or MVS/XA) is available.

3.9 The ADDRSPC Parameter

This parameter specifies if the job will use real or virtual storage.

General syntax

ADDRSPC={VIRT|REAL}
VIRT – The REGION will be virtual storage and is the default
REAL – The REGION will be real storage.

Remark: This is the rarely used parameter because of the default. Note that
ADDRSPC=REAL is a parameter that is disallowed in practically all installation
because it can cause serious performance problems for other jobs.

3.10The NOTIFY Parameter

This parameter informs a TSO user when his or his job terminates.

General Syntax

NOTIFY=userid keyword parameter
userid – A name from 1 to 7 characters, identifying a valid TSO user.

Page 17 of 80
(Company Confidential)

JCL

E.g. NOTIFY=DA0001T

If coded, a message will appear on the user’s TSO terminal indicating if the job
abended or got a JCL error. If the job terminates while the user was logged off, the
message will appear when the user logs on. If the NOTIFY parameter is omitted, no
message will appear when the job terminates.

Remark: You can also code NOTIFY=&SYSUID instead of your userid.

3.11The RESTART Parameter

This parameter requests that a job begin its execution with a step other than the first
one.

General Syntax

RESTART={stepname|procexec.stepname| *} keyword parameter

stepname – The name of the step where execution is to begin.

procexec.stepname – The name of the EXEC statement invoking a procedure and the
name of the step within the procedure where execution is to begin

Note: Procedures will be covered on day 3.

* - Indicates that execution of the job is to begin with the first step and is the default.

Things to avoid:
• Duplicate names for EXEC statements invoking procedure. If

RESTART=procsexec.stepname is used, the first procexec found will be used
• Duplicate stepnames within procedure. If RESTART=procsexec.stepname is used,

the first stepname within procexec found will be used
• Duplicate stepnames. If RESTART=stepname is used, the first stepname found

will be used
• EXEC statements (invoking procedures or any step) without names. No restart is

possible

Page 18 of 80
(Company Confidential)

JCL

E.g. If the compile, link and run steps are given in one JCL and subsequently the
execution has to begin from the run step we can give

000100 //DA0001TC JOB LA2719,'SHEELA',NOTIFY=DA0001T,
 000110 // MSGCLASS=X,TIME=(0,1),RESTART=COBRUN
 000112 //***
 000120 //* STEP TO COMPILE A PROGRAM
 000130 //* COMPILER PROGRAM NAME - IKFCBL00
 000140 //* LIBRARY NAME - SYS1.COBCOMP
 000150 //* SYSLIN - OUTPUT FILE NAME
 000160 //* SYSIN - INPUT FILE NAME (I.E. COBOL PROGRAM NAME)
 000170 //* SYSUT1,2,3, - TEMPORARY FILES REQUIRED BY COBOL COMPILER
 000180 //***
 000200 //COB EXEC PGM=IKFCBL00,REGION=1024K,
 000210 // PARM='NOTRUNC,NODYNAM,LIB,SIZE=4096K,BUF=116K,APOST,NORES'

 000400 //SYSLIB DD DSN=SYS1.COBCOMP,DISP=SHR
 000500 //SYSPRINT DD SYSOUT=*
 000600 //SYSLIN DD DSN=&&TEMP,DISP=(NEW,PASS),
 000700 // UNIT=SYSALLDA,SPACE=(TRK,(40,40))
 000710 //SYSUT1 DD UNIT=SYSALLDA,SPACE=(TRK,(6,1))
 000800 //SYSUT2 DD UNIT=SYSALLDA,SPACE=(CYL,(6,1))
 000900 //SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(6,1))
 000910 //SYSUT4 DD UNIT=SYSALLDA,SPACE=(CYL,(6,1))
 001000 //SYSIN DD DSN=DA0001T.SHEELA.COBOL(PRG1),DISP=SHR
 001100 //**
 001110 //* STEP TO LINK THE COBOL PROGRAM
 001120 //* LINKER PROGRAM NAME - IEWL
 001130 //* LIBRARY NAME - SYS1.COBLIB
 001140 //* SYSLMOD - OUTPUT DATASET NAME
 001150 //* SYSLIN - INPUT DATASET NAME
 001160 //**
 001200 //LKED EXEC PGM=IEWL,PARM='LIST,XREF,LET,MAP',
 001300 // REGION=4096K,COND=(0,LT,COB)
 001400 //SYSLIN DD DSN=&&TEMP,DISP=(OLD,DELETE)
 001500 //SYSLIB DD DSN=SYS1.COBLIB,DISP=SHR
 001600 //SYSLMOD DD DSN=DA0001T.SHEELA.LOADLIB(PRG1),
 001610 // DISP=SHR,UNIT=SYSALLDA
 001800 //SYSUT1 DD UNIT=SYSALLDA,SPACE=(1024,(50,20))
 001900 //SYSPRINT DD SYSOUT=*
 002000 //*
 003000//*STEP TO RUN COMPILED COBOL PROGRAM
 000500 //COBRUN EXEC PGM=PRG1
 000600 //STEPLIB DD DSN=DA0001T.SHEELA.LOADLIB,DISP=SHR
 000700 //SYSPRINT DD SYSOUT=*
 000810 //INF1 DD DSN=DA0001T.EMPDATA,DISP=SHR
 000900 //OTF1 DD DSN=DA0001T.L3,DISP=(NEW,CATLG,DELETE),
 001000 // UNIT=SYSDA,SPACE=(TRK,(1,1)),
 001100 // DCB=(LRECL=80,RECFM=FB,BLKSIZE=800,DSORG=PS)
 001200 //SYSOUT DD SYSOUT=*

Page 19 of 80
(Company Confidential)

JCL

3.12The TYPRUN Parameter

This parameter requests special processing for the job.

General Syntax

TYPRUN={HOLD|JCLHOLD|SCAN|COPY} keyword parameter

HOLD - Job will held (and not executed temporarily) until the operator uses a
command to release. A job will be held in the input queue only if syntactically correct

JCLHOLD (JES2 only) – Job will held (and not executed) until the operator uses a
command to release it. Note the job will be held in queue even if it is syntactically
incorrect. This option is rarely used.

SCAN – Job will be scanned for all syntactical JCL errors but will not execute.

COPY (JES2 only)- Job will be printed. No execution and no syntax checking takes
place. This option is also rarely used.

The following JOB statement illustrates the use of the parameters relevant to the JOB
statement:

//da0001t JOB LA719,pai,MSGCLASS=A,MSGLEVEL=(1,1),PRTY=5,
// CLASS=B,REGION=0M,TIME=(0,1),NOTIFY=da0001t

Page 20 of 80
(Company Confidential)

JCL

4 The EXEC Statement
An EXEC statement identifies a step during the reading process when a job is
submitted to the system. When an EXEC is found, the system accepts all JCL
statements that follow as belonging to the step, until a delimiter is found. There are
four possible delimiters for a step during the reading process:

• Another EXEC statement in the input stream. It signals the end of (reading)
one step and the beginning of (reading) of another

• A JOB statement
• A null statement i.e. //. All JCL statements will be ignored except for a JOB

statement
• End-of-file on the reading device, meaning there are no more statements to

read

General Syntax

//[stepname] EXEC parameters
stepname is optional. When the stepname is omitted no reference can be made. A job
can contain a maximum of 255 steps.

4.1 The PGM Parameter

The PGM parameter identifies the program to be executed in a step.

General Syntax

PGM=pgmname positional parameter
pgmname - Name of the program to be fetched from the load library and executed.

The program specified in PGM is always a member of library (PDS). This is
commonly known as an executable program library or a load library. The EXEC
statement can identify only the member. It has no parameter available to identify the
library. If necessary, this must be done by using a JOBLIB or a STEPLIB DD
statement.

E.g.4.1

//DA0001TA JOB LA2719,PCS,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//JOBLIB DD DSN=DA0001T.LIB.LOADLIB,DISP=SHR
//S1 EXEC PGM=ASSIGN1

 OR

//DA0001TA JOB LA2719,PCS,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//S1 EXEC PGM=ASSIGN1
//STEPLIB DD DSN=DA0001T.LIB.LOADLIB,DISP=SHR

Page 21 of 80
(Company Confidential)

JCL

If neither JOBLIB nor STEPLIB is coded, the system searches certain predefined
libraries. They are the system default libraries. If the specified member is found, it is
executed. If not found, the result is S806-04 ABEND failure.

The following keyword parameters can be specified at the EXEC statement. They are
REGION, ADDRSPC, TIME, PARM and ACCT.

4.2 The REGION Parameter

This parameter specifies the limit of available storage for the step within the job’s
address space.

General Syntax

REGION=value{K|M} keyword parameter
value – 1 to 2096128 if K (1024 bytes) is used. It should be an even number; it will
be rounded to the next higher even number.

value – 1 to 2047 if M (1024K or 1048576 bytes) is used. M is not available to
MVS/SP, only to MVS/XA and MVS/ESA

If the REGION parameter is omitted, the REGION parameter in the EXEC statements
within the job will be used. If it is coded in neither the JOB nor the EXEC statement,
an installation-defined default will be used. The default value of most installations is
between 500K and 1000K.

If the REGION parameter is coded in both the JOB and an EXEC statement within
the job, the value in the JOB statement will be used.

The REGION parameter in the JOB statement is used much more often than the one
in the EXEC statement. Coding the same value for all steps would have the same
effect as the REGION parameter in the JOB statement.

E.g. 4.2

//DA0001TA JOB LA2719,PCS,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//S1 EXEC PGM=ASSIGN1,REGION=500K
//STEPLIB DD DSN=DA0001T.LIB.LOADLIB,DISP=SHR

4.3 The TIME Parameter

This parameter specifies the total amount of CPU time that the step is allowed to use.

General Syntax

TIME=([minutes][,seconds] | [1440]) keyword parameter

Page 22 of 80
(Company Confidential)

JCL

minutes - a number from 1 to 1439
seconds – a number from 1 to 59
1440- The step will not be timed for CPU. Note that TIME=1440 is rarely used, and

most installation disallow its use in a testing environment. TIME=1440 should
be used by an on-line system like CICS OR ADS/O.

When the TIME parameter is omitted, an installation-defined default will be used.
This default is usually very high and unlikely to cause an S322 ABEND failure.

If the TIME parameter is also coded in the JOB statement, both will be in effect and
either can cause a S322 ABEND failure. It is not advisable to use them both.

Remark: It is possible for a step to get more CPU time than that is specified in the
TIME parameter or the default by a maximum 10.5 seconds. This is due to the fact
that the system checks for violations every 10.5 seconds.

E.g. 4.3

 //DA0001TA JOB LA2719,PCS,MSGLEVEL=(1,1),NOTIFY=&SYSUID
 //S1 EXEC PGM=ASSIGN1,REGION=500K,TIME=(,3)
 //STEPLIB DD DSN=DA0001T.LIB.LOADLIB,DISP=SHR

4.4 The ADDRSPC Parameter

This parameter specifies if the step will use real or virtual storage.

General syntax

ADDRSPC={VIRT|REAL}
VIRT – The REGION will be virtual storage and is the default
REAL – The REGION will be real storage.

If the ADDRSPC parameter is also coded in the JOB statement, the value in the JOB
will be used.

Remark: This is the rarely used parameter because of the default. Note that
ADDRSPC=REAL is a parameter that is disallowed in practically all installation
because it can cause serious performance problems for other jobs.

Page 23 of 80
(Company Confidential)

JCL

4.5 The ACCT Parameter

The parameter specifies accounting information to be used for the step as opposed to
the accounting information in the JOB statement.

General Syntax

ACCT=(acctno [,additional-acct-info]) keyword parameter

acctno – The account number to be used for the step
additional-acct-info – same as in the JOB statement.

The ACCT parameter is seldom used, and when it is, only the account number
normally appears. This is used to charge resource utilization for a step to a different
account number other than the one coded in the JOB statement.

If an account number is also coded in the JOB statement, the account number in the
EXEC statement will be used.

E.g 4.4

 //DA0001TA JOB LA2719,PCS,MSGLEVEL=(1,1),NOTIFY=&SYSUID
 //S1 EXEC PGM=IEFBR14,ACCT=(‘es0013,hr4200,iefbr14’)
 //DD1 DD DSN=DA0001T.SHEELA.EMPFILE,disp=(MOD,DELETE),
 // SPACE=(TRK,0),UNIT=SYSDA

4.6 The PARM Parameter

This parameter provides a way to supply
data of limited size to the executing
program

General Syntax

PARM=string keyword parameter

string –A string of characters up to 100. If commas are part of the string, the entire
field must be enclosed in parentheses (or apostrophes). If any portion of the string
contains special characters (other than hyphen), that portion of the entire string must
be enclosed in apostrophes. Note that any parentheses used count toward the
maximum. Apostrophes do not.

All information after the “=” in the PARM parameter, excluding apostrophes, will be
saved by the system within the step’s own region. When the program begins
execution by using the appropriate instructions, it can find the saved information in
storage.

Page 24 of 80
(Company Confidential)

JCL

In COBOL, the following must be coded:

LINKAGE SECTION.
1 PARM.

 05 PLENGTH PIC S9(04) COMP.
 05 INFO PIC X(05).

PROCEDURE DIVISION USING PARM.
0000-MAIN-PARA.

Note that any valid name may be used in place of PARM. The string is stored in
INFO and the PLENGTH is set to the length of the string.

E.g. 4.5

 //DA0001TA JOB LA2719,PCS,MSGLEVEL=(1,1),NOTIFY=&SYSUID
 //S1 EXEC PGM=ASSIGN2,PARM=’G2 ‘,TIME=(,1)
 //STEPLIB DD DSN=DA0001T.LIB.LOADLIB,DISP=SHR
 //INFILE DD DSN=DA0001T.EMPFILE,DISP=SHR

Rules for continuation

E.g. 4.6

//DA0001TA JOB LA2719,PCS,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//COB EXEC PGM=IKFCBL00,REGION=1024K,
// PARM=(‘notrunc,nodynam,lib,size=4096k,buf=116k’,
// ‘apost,nores,seq’)

 .
 .
OR

//DA0001TA JOB LA2719,PCS,MSGLEVEL=(1,1),NOTIFY=&SYSUID
//COB EXEC PGM=IKFCBL00,REGION=1024K,
// PARM=(notrunc,nodynam,lib,’size=4096k’,’buf=116k’,
// apost,nores,seq)
 .
 .

Note that an expression in quotes cannot be continued, we need to enclose the string
in parentheses and field containing special characters in apostrophes.

E.g.2 PARM=’29/06/00’ or (‘29/06/00’)

E.g. 3 PARM=(A,B,C,D) or ‘A,B,C,D’

The two (in Eg 3), however, are not the same. When parentheses are used, the
information found by the program is (A,B,C,D). If apostrophes are used, the
information found by the program is A,B,C,D.

Page 25 of 80
(Company Confidential)

JCL

4.7 The COND Parameter

The COND parameter can be coded in the JOB as well as the EXEC statement. It is
mostly used in the EXEC statement. This is the main tool for controlling the
execution of steps within a job is the COND parameter.

A Return (or Condition) code
A return code is a number between 0 and 4095, issued by an executing program just
before its execution is finished. It is intended to identify an important event found (or
not found) during the execution. For example, a program may issue a return code of
21 to indicate that a problematic event (such as a record is out of sequence) was
detected during the execution or a return code of 0 to indicate that the execution was
trouble free. The return code issued by a program is saved by the system for the
duration of the job. Any subsequent step of the same job can interrogate this return
code by using the COND parameter either in the JOB or EXEC statement. The result
of this interrogation is to permit or bypass the execution of the step. Note that the
return code is never available to a job other than the one issued it. In other words, the
step that interrogates the return code must be in the same job as, and subsequent to,
the step that issued it.

IBM-established conventions.
• Return code of 0 indicates a complete success
• Return code of 4 indicates a warning. The warning is benign, so a return code will

normally be treated as acceptable
• Return code of 8 indicates questionable results
• Return code of 12 indicates bad results
• Return code of 16 indicates a terminal condition

4.7.1 The COND Parameter in the JOB statement.

General Syntax

COND=((code,operator) [,(code,operator)]…….) keyword parameter
code - is a number between 0 and 4095
operator – provides a comparison between a return code and the code. There are six
operators: LT, LE, NE, EQ, GT, GE

There can be a maximum of eight tests in the COND parameter. Condition is
evaluated from left to right and if a test is satisfied, the job stops execution at that
point.

An example can best illustrate the mechanism of the COND parameter. Consider a job
with five steps. Assume that none will ABEND.

//DA0001TA JOB LA2719,PCS,COND=((12,LT),(8,EQ))

STEP1 issues a return code of 0
STEP2, if executed, issues a return code of 4
STEP3, if executed, issues a return code of 16

Page 26 of 80
(Company Confidential)

JCL

STEP4, if executed, issues a return code of 0
STEP5, if executed, issues a return code of 4
(Warning: This example does not adhere to conventions.)

STEP 1 is executed by default, since no previous return codes exist and hence, the
COND parameter in the JOB statement will be ignored for the first step.

Before STEP2 begins execution, the system interrogates the existing return code (0),
using the tests in the COND parameter and reading the test from left to right,
• Is 12 less than 0? The answer is “no”. The first test of the COND parameter was

not satisfied. The second test is tested.
• Is 8 equal to 0? . The answer is “no”. Neither of the two tests was satisfied, and

therefore, STEP2 is executed.

Before STEP3 begins execution, the system interrogates the existing return codes (0
and 4), using the tests in the same COND parameter. Since the result for return code 0
is already known, only 4 will be tested:
• Is 12 less than 4? The answer is “no”. The first test of the COND parameter was

not satisfied. The second test is tested.
• Is 8 equal to 4 . The answer is “no”. Neither of the two tests was satisfied, and

therefore, STEP3 is executed.

Before STEP4 begins execution, the system interrogates the existing return codes (0 ,
4 and 16), using the tests in the same COND parameter. Since the results for return
code 0 and 4 are already known, only 16 will be tested:
• Is 12 less than 16? The answer is “yes”. The first test of the COND parameter was

satisfied. There is no need for the second test. Executions of the job stops. STEP 4
and the remaining steps will not be executed.

A message will appear in the output:
IEF2011 DA0001TA STEP4-JOB TERMINATED BECAUSE OF CONDITION
CODES.

A formula can be devised and used to code the COND parameter, if return code
conventions are strictly adhered to:
 COND=(last-good-return-code,LT)
Or
 COND=(first-bad-return-code,LE)

Let us apply this formula to this example 0-4 is a good return code:
4 -is the last good return code….COND=(4,LT)
or
5 - is the first bad return code…..COND=(5,LE)
The two COND parameters are logically equivalent to each other, and it makes no
difference, which one is used.

Exercise: Code the COND parameter, where 0 is the only good return code.

Page 27 of 80
(Company Confidential)

JCL

4.7.2 The COND Parameter in the EXEC statement

The COND parameter can perform a test (or multiple tests) before a step begins
execution against the return (condition) codes issued by previous steps. If a test is
satisfied (reading from left to right), the step will not be executed.

General Syntax

COND=((code,operator[,stepname])[,(code,operator[,stepname])]…[,EVEN|ONLY])
keyword parameter

code - is a number between 0 and 4095

operator – provides a comparison between a return code and the code. There are six
operators: LT, LE, NE, EQ, GT, GE

stepname – Identifies the name of the preceding step whose return code will be
interrogated. It can also appear as two names procexec.stepname where “procexec”
identifies the name of the EXEC statement invoking a procedure and “stepname” the
stepname within the procedure.

EVEN - requests that execution be permitted even though a previous (any previous)
step has ABENDed.

ONLY - requests that execution be permitted only if a previous (any previous) step
has ABENDed.

There can be a maximum of eight tests in the COND parameter. EVEN or ONLY
count toward eight. Condition is evaluated from left to right and if a test is satisfied,
only that step is not executed.

Remark:
• EVEN and ONLY cannot make reference to a particular step. They refer to any

previous step that has ABENDed
• EVEN and ONLY are mutually exclusive
• EVEN and ONLY have no positional significance. Each can be coded anywhere

in the COND parameter in relation to other tests
• Following an ABEND failure, a step cannot be executed unless it contains EVEN

or ONLY in the COND parameter of its EXEC statement
• The first step will always be executed unless COND=ONLY appears in the exec

statement. COND=ONLY would cause the first step to be bypassed, since no
previous ABEND failures could have occurred. Any other COND parameter in the
first EXEC statement will be ignored (i.e., COND=(4,LT) or COND=EVEN) or
will result in JCL error (i.e., COND=(5,LT,stepname)) – since there are no
previous step

• A step that is not executed issues no return code because a program responsible
for issuing the return code was not even loaded into the storage. As a result no
return code exists. An attempt to interrogate the return code of such a step in the
COND parameter of a subsequent step will be ignored

Page 28 of 80
(Company Confidential)

JCL

• A step that ABEND’s issues no return code because a program always issues a
return code (conditionally or by default) if it reaches the end of its execution and
intentionally returns control to the system. When an ABEND occurs, the program
loses control instantly. And is evicted from execution by the system. As a result
when a step ABEND’s no return code exists (a completion code exists). An
attempt to interrogate the return code of such a step in the COND parameter of a
step will be ignored until it contains EVEN or ONLY

Page 29 of 80
(Company Confidential)

JCL

An example can best illustrate the mechanism of the COND parameter. Consider a job
with five steps. This is a classroom exercise.

//DA0001TA JOB LA2719,PCS,NOTIFY=&SYSUID,MSGLEVEL=(1,1)
//S1 EXEC PGM=P1 (4)
//S2 EXEC PGM=P2,COND=((0,LT,S1),EVEN) (12)
//S3 EXEC PGM=P3,COND=(8,LT,S2) (0)
//S4 EXEC PGM=P4,COND=(4,LT) (8)
//S5 EXEC PGM=P5,COND=((4,LT,S1),(0,LT,S3)) (abends)
//S6 EXEC PGM=P6,COND=(EVEN,(0,LE,S5),) (16)*
//S7 EXEC PGM=P7,COND=((0,LT,S1),EVEN) (0)
//S8 EXEC PGM=P8,COND=((0,LT,S1),(12,LT,S3)) (0)
//S9 EXEC PGM=P9,COND=EVEN (4)
//S10 EXEC PGM=P10,COND=ONLY (0)

If the COND parameter is coded neither at the JOB nor at the EXEC statement, the
step will be executed regardless of previous return codes. However it will not be if a
previous step has ABENDed.

If the COND parameter is coded in both the JOB statement as well as an EXEC
statement within the JOB, both will be tested. The COND parameter of the JOB
statement is tested first. If none of its tests are satisfied, then the COND parameter of
the EXEC statement is tested. If a test is satisfied, none of the steps from that point on
will be executed.

Page 30 of 80
(Company Confidential)

JCL

5 The DD statement
A DD (Data Definition) statement must appear in a step when the executing program
expects to read from or write to a dataset. In other words DD statement describes the
dataset.

The maximum number of DD statements in a step is 3273. The DD statement can be
coded in any order and always appears after the EXEC statement with the exception
of JOBLIB, JOBCAT, PROCLIB DD statement.

5.1 The DSN Parameter

The DSN (or DSNAME) parameter identifies the name of the dataset to be created or
retrieved.

General Syntax

DSN=name| NULLFILE | referback keyword parameter

name - It could be a qualified name. This name consists of two or more simple
name separated by periods for a maximum of 44 characters.

E.g. 1 DSN=DA0001T.PCS.EMPFILE

E.g. 2 DSN=DA0001T.PCS.COBOL(ASS1) describes a sequential dataset i.e. ASS1
is a member of a PDS/library DA0001T.PCS.COBOL

E.g. .3 DSN=&&name
A simple name preceded by two ampersands identifies a temporary dataset.
Temporary because it is not retained beyond job termination.

The system generates a name with the following format:

SYSyyddd.Thhmmss.RV001.jobname.name

yyddd – date as per Julian calendar;

hhmmss – uses 24-hour clock. It is the time of JOB initiation (beginning of JOB
execution)

 RV001 –system provided information in reference to the reader;

jobname – as it appears in the JOB statement;

name – whatever is coded after &&.

For e.g. DSN=&&temp. The system generates the following name:
 SYS03173.T090000.RV001.DA0001TA.TEMP

Page 31 of 80
(Company Confidential)

JCL

Remark: If the DSN name is omitted from a DD statement (except DD *, SYSOUT
and DUMMY) also indicates a temporary dataset. However the system generates a
name with the following format:

SYSyyddd.Thhmmss.RV001.jobname.R0000001

//SORTWK1 DD UNIT=SYSDA,SPACE=(TRK,(1,2),RLSE)

SYS00173.T100000.RV001.DA0001TA.R0000001

This form is basically used when a step requires a work dataset (a dataset created at
the beginning of the step’s execution and deleted at the end). Mostly used in utilities.

referback: This can have three formats:
- *.stepname.ddname – Requests that the dataset name be copied from DD

statement “ddname “ found in a previous step “stepname”.

 E.g.: DSN=*.STEP1.DD1

- *.ddname – Requests that the dataset name be copied from a previous DD
statement “ddname “ found in the same step “stepname”.

 E.g.: DSN=*.DD1

- *.procexec.stepname.ddname – Requests that the dataset name be copied
from DD statement “ddname “ found in a previous step “stepname” found
within procedure “procexec”. (name of EXEC statement invoking the
procedure)

 E.g.: DSN=*.PD1.STEP1.DD1

5.2 The DISP Parameter

The DISP parameter specifies :
- If the dataset is to be created or retrieved
- How to dispose of the dataset when the step terminates (normally or abnormally)

General Syntax

 NEW ,DELETE ,DELETE
 OLD ,KEEP ,KEEP

DISP= (SHR ,CATLG ,CATLG) keyword parameter
 MOD ,UNCATLG ,UNCATG

 ,PASS

DISP=(status-field,normal-disp-field,abnormal-disp-field)

Page 32 of 80
(Company Confidential)

JCL

The status-field: This field tells the system whether the dataset is to be created or
retrieved.

• NEW – Indicates that the dataset will be created in this step

• OLD - Indicates that an existing dataset will be retrieved and demands exclusive
control

• SHR - Indicates that an existing dataset will be retrieved. It also indicates that
this dataset, if on disk, can be shared with one or more other users

• MOD - This sub parameter has two possible meanings:
Indicates that an existing dataset will be retrieved. This will be true if

−The dataset is either cataloged or passed
−The DD statement contains either VOL=SER or VOL=REF (a VOL

VOL=REF referring to a DD statement, which is a nonspecific request for a
new dataset, is not included)

Indicates that the dataset will be created. This is true if:
−The DD statement contains neither VOL=SER nor VOL=REF and it

describes a dataset which is neither cataloged nor passed
−The DD statement contains VOL=REF referring to a DD statement, which is

nonspecific, request for a new dataset

E.g. 1 //DD1 DD DSN=DA0001T.EMPFILE,DISP=(MOD,CATLG),
 // UNIT=TAPE

Explanation:
1. The system assumes DA0001T.EMPFILE to be an existing dataset. Since the DD

statement contains neither VOL=SER or VOL=REF, the system searches the
catalog and gets volume information from the catalog entry. The volume having
been found, the dataset will be treated as existing dataset.

2. Had the dataset been neither cataloged nor passed, the system would have been
unable to find the volume information and MOD will default to new.

E.g. 2 //DD1 DD DSN=DA0001T.EMPFILE,DISP=(MOD,CATLG),
 // UNIT=SYSDA,VOL=SER=BS3003,SPACE=(TRK,(1,2))

Explanation: Since VOL=SER is specified; the fate of MOD is sealed, whether or not
it exists. It will be treated as OLD (with appropriate positioning). If the dataset exists
on that volume no problem, however, if it does not exist the result will be S213-04
ABEND failure (i.e. dataset does not exist)

Note: When UNIT and VOL=SER is specified the system does not search the catalog
to locate the dataset.

The normal disposition field: This field is used to tell the system how to dispose of
the dataset when the step terminates normally (without an ABEND).

Page 33 of 80
(Company Confidential)

JCL

• DELETE: indicates that the dataset is to be deleted when the step terminates. For
an existing dataset, OLD, SHR or MOD (not defaulting to NEW), the dataset will
also be uncataloged, if the catalog were used while retrieving the dataset. It will
only delete if the catalog were not used during the retrieval. This means that for a
cataloged dataset, if you specify UNIT and VOL=SER the system does not search
the catalog.

Note:

1. When a tape dataset is deleted, nothing happens. A tape dataset cannot be deleted
through the DISP parameter. It is effectively deleted when the dataset is written
over.

 2. A VSAM cluster cannot be deleted by coding DISP=(OLD,DELETE) as it defaults
to DISP=(OLD,KEEP).

3. A member of PDS cannot be deleted, as DISP applies to the entire PDS, and as
result it deletes the entire PDS. Use either TSO or IEHPROGM utility.

4. The system always issues a message indicating “ DELETED’ or “NOT
DELETED N” N indicates the reason for failing.

• KEEP – Indicates that the dataset is to be kept when the step terminates. The
system takes no action and issues a message indicating the dataset was kept.
Again, the system issues a message “KEPT”. Note that “NOT KEPT” message
does not exist.

Note: KEEP does not imply CATLG. As a result, DISP=(NEW,KEEP) should be
rarely used because next time you retrieve the dataset, you need to specify UNIT and
VOL=SER.

• CATLG – Indicates that the dataset is to be kept and an entry for it placed in the

catalog when the step terminates.

• PASS – Indicates that an entry for the dataset (containing DSN, VOL=SER and
UNIT information) be placed on a table in storage (Passed Dataset Queue). This
entry is to be used in a subsequent step to “receive the passed dataset”. A message
will appear “PASSED”.

The abnormal (or conditional) disposition field: This field is used to tell the system
how to dispose of the dataset when the step terminates abnormally (ABENDs). It is
required only if this disposition is different from the normal disposition.

DELETE,KEEP,CATLG, and UNCATLG have the same meaning they do in the
normal disposition. Note that PASS is not permitted in the abnormal disposition field.
The best example of using the abnormal disposition field is
DISP=(NEW,CATLG,DELETE). If there is ABEND, the dataset is to be deleted.
This eliminates future manual intervention to delete and uncatalog the dataset in order
to restart.

Page 34 of 80
(Company Confidential)

JCL

Defaults: Some defaults in the DISP parameter are fixed and others variable.
1. If the DISP parameter is omitted, the default is always (NEW,DELETE).

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(1,2))
 //* (NEW,DELETE) IS THE DEFAULT

2. If the status is omitted, the default is always NEW
 DISP=(,CATLG) is same as DISP=(NEW,CATLG)

3. If the normal disposition field is omitted
• If the status field is NEW, the default is DELETE

• If the status field is OLD or SHR and the dataset name non temporary
−If the DD statement is not receiving a passed dataset, the default is

KEEP.
//DD1 DD DSN=DA0001T.EMPFILE,DISP=SHR

−If the DD statement is receiving a passed dataset, which was created during
the execution of the job and was never given a permanent disposition, the default is
DELETE.

//S1 EXEC PGM=PR
//DD1 DD DISP=(, PASS), DSN=USER1.PDST, UNIT=SYSDA,
// DCB=(BLKSIZE=23440, LRECL=80, RECFM=FB),
// SPACE=(TRK, (50,10),RLSE)
//S2 EXEC PGM=PC
//DD2 DD DISP=OLD, DSN=USER1.PDST

In DD2 DISP=OLD defaults to DISP=(OLD, DELETE)

−If the DD statement is receiving a passed dataset, which was created during the
execution of the job but was given permanent disposition since being created, the
default is KEEP.

//S1 EXEC PGM=PR
//DD1 DD DISP=(, PASS), DSN=USER1.PDST, UNIT=SYSDA,
// DCB=(BLKSIZE=23440, LRECL=80, RECFM=FB),
// SPACE=(TRK, (50,10), RLSE)
//S2 EXEC PGM=PC, COND=(4, LT)
//DD2 DD DISP=(OLD, CATLG), DSN=USER1.PDST
//S3 EXEC PGM=PF, COND=(4,LT)
//DD3 DD DISP=(OLD,PASS), DSN=USER1.PDST
//S4 EXEC PGM=PK, COND=(4, LT)
//DD4 DD DISP=OLD, DSN=USER1.PDST

In DD4 DISP=OLD defaults to DISP=(OLD,KEEP)

Page 35 of 80
(Company Confidential)

JCL

−If the DD statement is receiving a passed dataset, which existed before the job
began execution, the default is KEEP.

//S1 EXEC PGM=PR
//DD1 DD DISP=(SHR,PASS), DSN=USER1.LONE
//S2 EXEC PGM=PK, COND=(4,LT)
//DD2 DD DISP=SHR,DSN=USER1.LONE

In DD2 DISP=SHR defaults to DISP=(SHR,KEEP)

Despite the several possible defaults for DISP=OLD or DISP=SHR their use is
extremely common. When not receiving a passed data set, they always safely default
to DISP=(OLD,KEEP) and DISP=(SHR,KEEP), respectively.

• If the status field is OLD or SHR and the dataset name temporary, the default is
pass.

 //DD1 DD DISP=OLD,DSN=&&TEMP

 DISP=OLD defaults to DISP=(OLD,PASS) and the message will appear in the
output –“INVALID DISP FIELD – PASS SUBSTITUTED”

• If the status field is MOD, which defaults to an existing data set, MOD works the
same as OLD and SHR

• If the status field is MOD, which defaults to NEW, the default of the second field
is DELETE

DISP=MOD can default to (MOD,KEEP), (MOD,DELETE), (MOD,PASS), and
(NEW,DELETE). In view of all these possibilities, it is recommended that defaults
not be practiced with MOD.

4. If the abnormal disposition field is omitted, the default is the normal disposition
field.

Remark: The various fields of the DISP parameter stand for the PDS and not the
member.

//DD1 DD DSN=USER1.LIB2(Z32),DISP=(OLD,DELETE,DELETE)

In the above case the PDS and the member both will be deleted. Both the PDS and the
member should exist.

Page 36 of 80
(Company Confidential)

JCL

How a member is handled depends on whether or not it exists and on whether the
program opens for input or output. A summary of all possibilities is presented below.

//S1 EXEC PGM=P1
//D1 DD DSN=DA0001T.LIB(M12),DISP=SHR

• M12 EXISTS
In P1 if M12 is opened in I/P mode, for reading, M12 is read.
In P1 if M12 is opened in O/P mode for writing, M12 will be replaced (not in
place)

• M12 DOES NOT EXIST

In P1 if M12 is opened in I/P mode for reading, ABEND (S013-18).
In P1 if M12 is opened in O/P mode for writing; M12 will be created and
written into.

5.3 The UNIT Parameter

The UNIT parameter identifies:
• The device type or device address where the volume is mounted. The volume is

the one where the dataset resides (or will reside if DISP=NEW)
• The number of devices to be allocated to the dataset
• When the mount message is to be shown to the operator.

General Syntax

 device address
UNIT =(generic device name ,device count ,DEFER) Keyword
parameter

 generated device name

device address – Identifies the exact device address. This notation is almost never
used.

generic device name – Identifies the device type using a universal system-supplied
name.

E.g.: UNIT=3390 ; UNIT=3400-5 ; UNIT=3480

generated device name – Identifies the device type using an installation-defined
name.

E.g.: UNIT=SYSDA ; UNIT=DISK ; UNIT=TAPE

The generated names can be made to mean whatever an installation wishes them to
mean. For example, UNIT=SYSDA can mean all 3380 devices of any density, or

Page 37 of 80
(Company Confidential)

JCL

single density only, or a subset of double density devices or a combination of 3380
and 3390 device. Their definition can vary from installation to installation.

Of the three, the generated device name is far the most commonly used.

device count – Specifies the number of devices to be allocated for the dataset. The
limit is 59 devices. If omitted, default is 1 except when DD statement describes a disk
multi-volume dataset. In such case, device count=number of volumes.

E.g. 1 UNIT=(SYSDA,5) , UNIT=(TAPE,2)

E.g. 2 UNIT=SYSDA is same as UNIT=(SYSDA,1) because of default

E.g. 3 //DD1 DD DSN=DA0001T.EMPFILE,DISP=(,CATLG,DELETE),
 // UNIT=SYSDA,VOL=SER=(BS3001,BS3002,BS3003),
 // SPACE=(TRK,(1,2)),DCB=(LRECL=80,RECFM=FB,
 // BLKSIZE=800)

In this example UNIT =SYSDA defaults to UNIT=(SYSDA,3)

Note: UNIT=(,2) can also be used if the device is being supplied by the catalog.

Default:
There is no default for device name. If it is not coded in the UNIT parameter and it is
also not supplied by the catalog, the Passed dataset Queue, or VOL=REF, the result
will be a JCL error . The message is

“IEF210I JOBNAME STEPNAME DDANAME –UNIT FIELD SPECIFIES
INCORRECT DEVICE NAME”, which is misleading. It means that the device
name was needed but not coded.

Sharability Considerations

With the exception of SHR, all other status fields demand exclusive usage of a data
set. This means the following:

If a job containing a DD statement (in any step) with OLD, NEW, or MOD begins
execution, no other job that contains a DD statement (in any step) with the same data
set name can begin execution, regardless of DISP used. It is placed in a wait state (no
S522 ABEND can occur) and the operator is informed. When the last step that uses
the data set with OLD, NEW, or MOD terminates, then the data set is freed and other
jobs can begin execution. Note that if this step were the last one of the job, no other
job can begin execution throughout the execution of the first job despite the fact that
only the last step uses the data set.

If a job containing a DD statement (in any step) with a DISP of SHR begins
execution, no other job that contains a DD statement (in any step) with the same data
set name can begin execution, if the DISP is OLD, NEW, or MOD. It is placed in a
wait state (no S522 ABEND can occur) and the operator is informed. When the last
step that uses the data set terminates, then the other job can begin execution.

Page 38 of 80
(Company Confidential)

JCL

DISP=SHR should be used whenever retrieving and reading a disk data set.
DIPS=OLD should be used whenever retrieving and updating a disk data set.

For tape data sets DISP=OLD is normally used, but DISP=SHR is also acceptable.
Tape us a non-sharable device. DISP=SHR can be useful if two jobs contain a DD
statement each describing a data set by the same name but on different volumes.

5.4 The VOL Parameter

The main function of the VOL (or VOLUME) is to identify the volume(s) by serial
number where an existing dataset resides or where a new dataset will reside.

General Syntax

 VOL SER=(vol1 [,vol2]…
 VOLUME = REF=referback

 ,REF=dsname

SER=(vol1,vol2….) – Specifies the serial number(s) of the volume(s) to be used. The
maximum number of volumes is 255.

A volume serial is a combination of alphabetic, numeric, and national characters ($ @
#) up to 6. A hyphen is also permitted. In a real (or production) environment, the
number of characters is almost never less than 6.

E.g. VOL=SER=BS3001 or VOLUME=SER=BS3001
 VOL=SER=(BS3013,BS3014)

The VOL parameter must be coded:
1) When retrieving a dataset which is neither cataloged nor passed.
2) When retrieving a dataset, which is cataloged, but the catalog must not

be used.
3) When creating a dataset which must reside on a particular volume.

REF=referback
Referback – This can have three formats:
• *.stepname.ddname - Requests that the volume be the same as for DD statement

“ddname” found in the previous step “stepname”

VOL=REF=*.STEP2.DD1

• *.ddname - Requests that the volume be the same as for previous DD statement
“ddname” found in the same step “stepname”.

VOL=REF=*.DD1

• *.procexec.stepname.ddname - Requests that the volume be the same as for DD
statement “ddname” found in the previous step “stepname” found within a
procedure “procexec” (name of EXEC statement invoking the procedure

Page 39 of 80
(Company Confidential)

JCL

VOL=REF=*.PR1.STEP2.DD1

Referbacks are not encouraged. They should be used only when they are necessary. A
referback with a “stepname” will cause a JCL error if the referenced step does not
execute. Such referbacks must be avoided where restart is required.

REF=dsname – Requests that the volume be the same as the one where dataset
“dsname” resides on. The dataset must be cataloged or passed. The dataset does not
even have to exist, as long as it is cataloged or passed. The name of the referenced
dataset need not appear anywhere else in the job.

E.g: VOL=REF=DA0001T.EMPFILE

Remark: When VOL=REF (referback or dsname) is used, the system supplies the
volume as well as the unit information. Therefore, the UNIT parameter is usually
unnecessary.

Default:
There is no default for VOL=SER or VOL=REF. However if both are omitted, no
JCL error results. Instead the meaning of DD statement changes. For example when
retrieving and VOL=SER or VOL=REF is coded, the catalog will not be used. If
neither is coded, the catalog will be used.

5.5 The SPACE Parameter

The SPACE parameter must be included in a DD statement when:

− A new disk dataset is created.
− An old dataset needs to alter its entitlement to additional space. i.e., Request

additional disk space for an old dataset when available space is exhausted.
− An old disk dataset must free up all unused space.

General Syntax

 TRK,
SPACE=(CYL, (prim-alloc [,sec-alloc] [,directory]) [,RLSE])

 blksize,

TRK – Requests that space be allocated in tracks.
CYL – Requests that space be allocated in cylinders.
blksize – Specifies the average blocksize of the dataset. The system will translate it to
tracks.

• Prim-alloc- Primary allocation or Primary quantity:
It identifies the number of tracks (if TRK is coded) or cylinders (if CYL is coded) or
the number of blocks (if blksize is coded) that must be allocated during the allocation
process for a new dataset before the step begins execution. The system will allocate
the requested space in one extent. If this is not possible (and CONTIG is not coded),

Page 40 of 80
(Company Confidential)

JCL

two extents will be used, then three and so on up to five extents. If as many as five
extents still cannot satisfy the request, the result will be an allocation JCL error:

IEF257I jobname stepname ddname –SPACE REQUESTED NOT
AVAILABLE.

If the request is nonspecific (no VOL=SER or VOL=REF), needing a storage volume,
the JCL error message will be different:

IEF257I jobname stepname ddname –INSUFFICIENT SPACE ON STORAGE
VOLUMES.

Remark: The system will always allocate the primary quantity in the least number of
extents possible on a single volume. The primary quantity cannot be split over
multiple volumes. The primary allocation cannot be omitted (coding 0 is allowed). It
is ignored if the dataset is old.

E.g. 1 SPACE=(TRK,3)
E.g. 2 SPACE=(CYL,4)
E.g. 3 SPACE=(23440,100)
E.g. 4 SPACE=(TRK,0)

The primary allocation cannot be omitted (coding 0 is allowed). It is ignored if the
dataset is old.

• sec-alloc - Secondary allocation or secondary quantity:
It identifies the number of tracks (if TRK is coded) or cylinders (if CYL is coded) or
the number of blocks (if blksize is coded) that are to be allocated when all available
space is exhausted while writing to a dataset. The system will allocate the secondary
quantity in the least number of extents possible, and just like the primary quantity; it
can be given in as many as five extents, if necessary

The system will always supply the specified secondary allocation when one is needed
unless one of the two events occurs:

− The allocated volume does not have enough space to satisfy the secondary
allocation and no other volumes are allocated.

− The needed secondary allocation, if granted, will cause the dataset to exceed 16
extents on the volumes and no other volumes are allocated.

If either of these two conditions arises, the result will be a SB37-04 ABEND failure
(normally for a sequential dataset). For a PDS, the ABEND can also be SE37-04.

Please note that a PDS is confined to a single volume, while a sequential dataset can
extend into a maximum of 59 volumes. The 16-extent-per-volume limit for a dataset
is system-supplied and cannot be altered.

Page 41 of 80
(Company Confidential)

JCL

The secondary allocation is optional. If omitted, defaults to 0. When no secondary
allocation is coded and the primary allocation is exhausted, the result is an SD37-04
ABEND failure.

Directory – Specifies the number of directory blocks (256 bytes each) to be assigned
to the directory of a PDS.
The directory quantity, if not coded, defaults to zero; therefore, the directory quantity
must be specified for a new PDS. If it is, not S013-14 ABEND failure will occur if an
attempt is made to add the first member to a PDS.

Remark: The directory quantity is taken away from the beginning of the primary
allocation if TRK or CYL is coded in the SPACE parameter. When blksize is coded,
the system adds the directory blocks to the data blocks and then computes the amount
of primary space.

E.g. 1 SPACE=(TRK,(20,5,5)) OR SPACE=(TRK,(20,,5)) if no secondary
E.g. 2 SPACE =(CYL,(20,5,5)) OR SPACE =(CYL,(20,,5)) if no secondary
E.g. 3 SPACE =(23440,(200,50,5)) OR SPACE =(23440,(200,,5)) if no secondary

RLSE –Requests that any unused space be freed when the dataset is closed. This
works for both new and old datasets, provided they were opened for output. Space
will be released on the boundary used in the SPACE parameter. If tracks (or
cylinders) were allocated, unused tracks (or cylinders), will be released.

Remark: Using RLSE is highly recommended for datasets not intended for future
expansions. Temporary datasets are ideal candidates. For datasets that expand in
future runs, RLSE can result in a larger number of extents, and, possibly, a premature
SB37-04 ABEND failure. RLSE will be ignored if the dataset is opened by another
user (or shared by another job) or the step ABEND’s.

E.g.: SPACE=(TRK,(5,1),RLSE)

5.6 The LABEL Parameter

The LABEL parameter can specify:

• The sequence of a tape dataset on a volume.

• The type of label of the dataset.

General Syntax

LABEL=([seq-no][,type]) keyword parameter

seq-no – Identifies the sequence number of the dataset on a tape volume. 1 to 4 digits.
If omitted, it defaults to 1. If 0 is coded, it defaults to 1. Maximum: 9999

E.g. LABEL=3

type – Identifies the type of label for the dataset.
Page 42 of 80

(Company Confidential)

JCL

There are many types of labels. To name a few, which are important from project
perspective.

SL – Indicates IBM standard label. If the sub parameter is omitted, SL is the default.

NL – Indicates no labels are used. NL is not commonly used. Normally, NL is used
for a tape coming from or going to another installation, which has no SL capabilities.

BLP – Bypass Label Processing: Indicates that labels will not be recognized and will
be treated as ordinary files. BLP is used as a last resort when neither SL nor NL can
accomplish what is required.

Label Verification: When retrieving an SL tape dataset, both the volume serial and the
dataset name will be verified. When creating an SL tape dataset with VOL=SER or
VOL=REF, only the volume serial will be verified.

When retrieving an NL tape dataset, neither the volume serial nor dataset name can be
verified. However, only an NL tape volume can be mounted. An SL volume will be
rejected.

Defaults: If omitted, the LABEL parameter defaults to (1,SL). There are four ways to
supply the same information.

• Omit the LABEL parameter

• Code LABEL=(,SL) 1 is the default

• Code LABEL=1 SL is the default
SL

VOL HDR1 HDR2 TM SL DATA SET # 1 TM EOF1 EOF2 TM TM

NL
NL DATASET #1 TM NL DATASET #2 TM TM

TM – Tape Mark

5.7 The DCB Parameter

The DCB parameter specifies values to be used to complete the Data Control Block
(DCB) when a dataset is opened. A DCB is constructed by the language processor
(compiler or assembler), based on the appropriate instructions of the language being
used, and resides inside the code of the program. The compiler collects this
information and defaults from various parts of the program (For e.g. In COBOL,
RECORD CONTAINS 80 CHARACTERS; BLOCK CONTAINS 10 RECORDS and
so on) and constructs the DCB. Note that the DCB exists only for non-VSAM datasets
and is checked by the OPEN routines (for input or output). Certain values must be

Page 43 of 80
(Company Confidential)

JCL

“hard-coded” in the DCB by the program. Others can be left out, giving the user the
option of supplying these values via the DCB parameter (as well as other means).

Page 44 of 80
(Company Confidential)

JCL

There are three suppliers of DCB information:

• Values supplied by the program, referred to as hard-coded. When a value is hard-
coded, it cannot be changed unless the program is changed

• Values coded in the DCB parameter of the DD statement. These values will be
ignored if they are already hard-coded

• Values from the standard label of the dataset. The values supplied by the label are
limited to: BLKSIZE,LRECL, RECFM, DSORG etc. Values from the label will
not be used if they are hard-coded inside the program or coded in the DCB
parameter of the DD statement

General Syntax

DCB=([referback] | [model][,subparameter],…… keyword parameter

referback – This can have three formats:

*.stepname.ddname - Requests that the DCB parameter be copied from the DD
statement “ddname” found in the previous step “stepname”.
DCB=*.STEP2.DD1

*.ddname - Requests that the DCB parameter be copied from a previous DD
statement “ddname” found in the same step “stepname”.
DCB=*.DD1

*.procexec.stepname.ddname - Requests that the DCB parameter be copied from DD
statement “ddname” found in the previous step “stepname” found within a procedure
“procexec” (name of EXEC statement invoking the procedure).
DCB=*.PR1.STEP2.DD1

Remark: The DCB referback copies the DCB parameter as opposed to the DSN and
VOL=REF referbacks which acquire the dataset name and the VOL=SER
respectively, whether or not the DSN and VOL parameters are present in the
referenced DD statement. If the DCB referback refers to a DD statement, which
contains no DCB, nothing is copied and no message appears.

Model – specifies the name of the dataset which:

• Must be cataloged. If it is not, the result will be a JCL error:
IEF2121 jobname stepname ddname –DATASET NOT FOUND

• Must be on disk (Tapes not allowed)

• Must reside on a volume that is accessible (online)

This dataset is called a model DSCB. The DCB information from the label of the
model is extracted and can be used.

Page 45 of 80
(Company Confidential)

JCL

E.g. 1. DCB=DA0001T.EMPFILE

E.g. 2. In case you want to override some of the subparameters, the overriding
subparameters must follow the DCSB model dataset name.

DCB=(DA0001T.EMPFILE,LRECL=100,BLKSIZE=800)

Models are generally used, during the creations of GDG’s and dummying the PDS.

• Subparameters: There is vast number of subparameters, the great majority of
which are seldom or never used

− BLKSIZE: Specifies the size of the block (also known as the physical record).
For RECFM=FB, the blocksize must be multiple of the logical record length,
and it identifies the exact size of the block. For RECFM=VB, the blocksize can
be any value up to the limit but atleast 4 bytes larger than the logical record
length. For RECFM=U, the blocksize can be any value up to the limit

Remark: There is no default for BLKSIZE. Coding BLKSIZE=0, the system will
compute the optimum blocksize based on the device type.

E.g. DCB=BLKSIZE=800

− LRECL – Specifies the size of the logical record. The maximum size is 32,760,
and it cannot be larger than blocksize, unless RECFM=VBS is used.

E.g. DCB=(LRECL=80,BLKSIZE=800)

− RECFM: Specifies the record format. There are several values (or
combinations of values) that can be coded.

• F - All blocks and all logical records are fixed in size.

• V - Blocks as well as logical records are of variable size. The first 4 bytes of each
block (and logical record) describe its length.

• B – One or more logical records reside in each block. B cannot be coded alone. It
is used in conjunction with F or V. For example FB or VB.

• U – Blocks are of variable size. There are no logical records. Mainly used with
Load Library.

• S- For fixed-size records, it indicates that no short blocks are permitted anywhere
but the end of the data. For variable-size records, it indicates that a logical record
can span more than one block. S cannot be coded alone. It must follow F, V, FB
or VB.

• A – Indicates that the first character of each record is an ANSI control character to

be used for printer carriage control. A cannot be coded alone. It must follow F, V,
FB, VB or U.

Page 46 of 80
(Company Confidential)

JCL

E.g. DCB=(LRECL=80,RECFM=FB,BLKSIZE=800)

If RECFM is not supplied through any means, U is the default.

− DEN: Identifies the density of the tape. DEN=3(or 4) indicates 1600 (or 6250)
BPI density.

− BUFNO: Identifies the number of buffers to be allocated in virtual storage by
the OPEN routines, which will contain the blocks to be read in or written out. If
omitted

Default is 5. The maximum is 255. Coding for BUFNO a number greater than 5 may
require that the REGION parameter be increased. However, default of 5 is more than
adequate in most cases of dataset processing.

E.g. //INFILE DD DSN=DA00011.EMPFILE,DISP=SHR,DCB=BUFNO=8

− DSORG: Identifies the organization of the datasets

• PS – Specifies physical sequential organization. Mostly QSAM and sometimes
BSAM

• PO - Specifies partitioned organization (or BPAM)

• DA- Specifies direct organization (or BDAM)

• IS – Specifies indexed sequential organization (or ISAM)

It is important to understand which of these often-used parameters are normally hard-
coded and which are not:

• BLKSIZE - Seldom hard-coded. The BLKSIZE is unrelated to the logic of the
program and hard-coding its value would cause unnecessary changes whenever
the BLKSIZE is changed. In COBOL, BLOCK CONTAINS 0 RECORDS must
be coded to avoid hard-coding the BLKSIZE. Omitting this clause will cause a
default of 1 to be used. The result will be a hard-coded BLKSIZE is equal to
LRECL. Many installation standards disallow hard-coding the BLKSIZE for
sequential and partitioned datasets

• LRECL – Frequently hard-coded. The logic of any ordinary program is
dependent on the LRECL and, as a result, the LRECL cannot be changed without
changing the logic of the program. Many high-level languages like COBOL
always hard-code the LRECL

• RECFM – Frequently hard-coded. The logic of any ordinary program is
dependent on the RECFM and, as a result, the RECFM cannot be changed without
changing the logic of the program. Many high-level languages like COBOL
always hard-code the RECFM

Page 47 of 80
(Company Confidential)

JCL

5.8 Instream Data

The input stream submitted to the system for execution consists of two possible parts:

• JCL mandatory part of the input stream

• Data mixed in with JCL in the input stream. This data is known as sysin data or
input stream data. It is optional part of the input stream and always has a logical
record length of 80. Any records encountered in the input stream which are not
JCL statements will be treated as sysin data.

Sysin data must be preceded by a DD statement such as:
//DDNAME DD *

 data

/*

Sysin data encountered by JES2 or JES3 following a DD * statement will be saved on
the SPOOL volume for future use. This is known as input spooling The sysin is
delimited (the spooling stops) by:

• A /* (delimiter) statement found
• A valid JCL statement
• An end-of-file condition on reading device

The asterisk (*) is a positional parameter. The DD * is a special statement which is
under complete JES2 or JES3 control.

SYSIN is a very common ddname used by many vendor-written programs to pass
control information to the utility. E.g. SORT,IEBGENER,IDCAMS utilities.

In user written programs, if you use COBOL ACCEPT statement, then in the run JCL
one of the DD statements will be SYSIN DD statement.

//SYSIN DD *
1234
/*

Remark: If sysin data is not preceded by DD *, the system will generate a statement
and place it in front of the sysin data .

E.g.

 //DA0001TA JOB LA2719,…..
//S1 EXEC PGM=ASS1
//STEPLIB DD …
1234
//DD1 DD …

Is equivalent to

Page 48 of 80
(Company Confidential)

JCL

//DA0001TA JOB LA2719,…..
//S1 EXEC PGM=ASS1
//STEPLIB DD …
//SYSIN DD * (generated statement)
1234
//DD1 DD …

Note: A line with blanks is the most common offender. It is invisible to the user but it
will be treated as data by the system this may or may not cause problem. Let us look
at the following example.
//DA0001TA JOB LA2719,…..
//S1 EXEC PGM=ASS1

//STEPLIB DD …
//SYSIN DD *
1234
//DD1 DD …

The system will interpret the above JCL in the following way:
//DA0001TA JOB LA2719,…..
//S1 EXEC PGM=ASS1
//SYSIN DD *

//STEPLIB DD …
//SYSIN DD * (generated statement)
1234
//DD1 DD …

Conclusion: If there are two or more DD statements by the same name in the same
step, this is not an error condition. When the program opens for SYSIN the first of the
two be used. The other will be allocated and ignored.

5.9 The SYSOUT Parameter

Print records generated by a program are not normally routed directly to a physical
printer (theoretically it is possible, but in practice it is seldom done). Instead, they are
written on the SPOOL pack and saved there for later viewing on a terminal or printing
(or both). This is called output spooling, and is under the control of JES2 or JES3,
which later can use one of their print routines to print the dataset. These print routines
must schedule the datasets for printing, and message classes are used for this purpose.
All print routines (called printers or writers) are associated with one or more classes
(in all 36 classes) and each dataset to be printed must also be assigned classes. The
printer routines select datasets for printing in a very similar way as initiators selects
jobs for executions. Use S.ST option of ISPF menu to view the output dataset.

The SYSOUT parameter can assign this class, known as sysout or output class, to a
dataset. Such datasets are called sysout or output datasets.

General Syntax

SYSOUT=(class| *) keyword parameter

Page 49 of 80
(Company Confidential)

JCL

class – Identifies the sysout class of the dataset from A to Z and 0 to 9.

 *- Indicates that the same class used in the MSGCLASS parameter of the JOB
statement (or the installation-defined default, if MSGCLASS parameter is omitted) is
to be used.

E.g. 1 //SYSOUT DD SYSOUT=A

E.g. 2 //SYSPRINT DD SYSOUT=*

This DD statement is used for printing system messages generated by JES2 or JES3.
Each step must have SYSPRINT DD statement. Absence will cause “SYSPRINT DD
STATEMENT MISSING” message in the sysout.

E.g. 3 //SYSOUT DD SYSOUT=* (or any sysout class may be assigned)

This DD statement is used when you have COBOL DISPLAY clause in your
program.

5.10Concatenation

Concatenating Datasets

At times, program may have to read in sequence several input datasets as if they were
one. This can be accomplished without physically putting the data in one datasets.
This is done by concatenating the datasets in JCL code with comparable DCB
characteristics without programming changes.

Note that only sequential and partitioned datasets can be concatenated. For sequential
datasets, the maximum number of concatenations is 255 and for PDS it is 16.
Concatenation has meaning only for sequential processing.

E.g. 1. Concatenation of physical sequential files.

//DD1 DD DSN=DA0001T.PCS.GROUP1,DISP=SHR
// DD DSN=DA0001T.PCS.GROUP2,DISP=SHR
// DD DSN=DA0001T.PCS.GROUP3,DISP=SHR

E.g. 2. Concatenation of partitioned datasets.

//DD1 DD DSN=DA0001T.PDS1.GROUP1,DISP=SHR
// DD DSN=DA0001T.PDS2.GROUP2,DISP=SHR
// DD DSN=DA0001T.PDS3.GROUP3,DISP=SHR

There are number of rules and restrictions for concatenations:

1. The first concatenation is the only one with a ddname.
2. The logical record length and the record format of concatenated datasets must be

the same. However, the blocksizes need not be.

Page 50 of 80
(Company Confidential)

JCL

3. The blocksize of the first concatenation must be greater than or equal to
blocksizes of all subsequent concatenation. Violation of this rule results in S001-
04 ABEND failure.

E.g. Assume that in the JCL below, the first concatenation has a blocksize of 800, the
second a blocksize of 800- and the third a blocksize of 23400.

//INFILE DD DSN=DA0001T.PCS.GROUP1,DISP=SHR,DCB=23400
// DD DSN=DA0001T.PCS.GROUP2,DISP=SHR
// DD DSN=DA0001T.PCS.GROUP3,DISP=SHR

4. Both sequential datasets and partitioned datasets can be concatenated, but not with
each other – sequential with sequential and partitioned with partitioned only.
Member of a PDS is treated as sequential dataset and thus can be concatenated
with sequential dataset.

E.g.

//IN DD DSN=DA0001T.EMPFILE,DISP=SHR
// DD DSN=DA0001T.PCS.DATA(EMP),DISP=SHR

5. Disk as well as tape datasets can be concatenated but not with each other. Only
like devices should be concatenated, disk with disk and tape with tape.

5.11DUMMY Parameter

The DUMMY parameter is a positional parameter. At times, one might want to
execute a program but suppress read or write operations in certain jobs, For example.
not print a report. At other times, one might want to test a program without actually
processing data. At times a DD statement referring to a dataset may be coded in the in
a JCL in production region .The DUMMY parameter may be coded in a test region
when the same JCL is to be executed.

The DUMMY parameter specifies that:

• No device or external storage be allocated

• No disposition processing is performed

• No input or output operations are performed for sequential access methods

Remark:
1 DCB information is established. Generally used during testing process and in

procedures. Instead of using DUMMY, one may use DSN=NULLFILE. It
differs from DUMMY by virtue of its position. It is a keyword parameter.

 e.g. //DD1 DD DSN=NULLFILE

2 When an attempt to dummy a PDS is made will cause an S013-64 ABEND
failure.

Page 51 of 80
(Company Confidential)

JCL

3 The DCB parameter may be required while coding DUMMY. Failure to do so
may cause an S013-10 ABEND failure.

4 DUMMY provides a safe way to eliminate I/O activity when required.

5.12The JOBLIB DD Statement

The JOBLIB statement identifies the program library (load library) where the
programs to be executed throughout the job resides. It must be placed between the
JOB and the first EXEC statement.

E.g.1:

//DA0001TA JOB,LA2719,……
//JOBLIB DD DSN=DA0001T.LIB.LOADLIB,DISP=SHR
//S1 EXEC PGM=PROGA
//S2 EXEC PGM=PROGB

Explanation: PROGA (and PROGB) is expected to reside in
DA0001T.LIB.LOADLIB as a member of a library and the system searches the
directory. If not found will search certain predefined libraries and the S806-04
ABEND failure occurs.

Remark:
A JOBLIB DD statement can have several concatenations (max: 16)

E.g. 2.

//DA0001TA JOB,LA2719,……
//JOBLIB DD DSN=DA0001T.LIB.LOADLIB,DISP=SHR
// DD DSN=DA0001T.LIB1.LOADLIB,DISP=SHR
// DD DSN=DA0001T.PROD.LOADLIB,DISP=SHR
//S1 EXEC PGM=PROGA

Explanation: All concatenations may be searched to locate a program. If, however,
the program is found in a concatenation other than the last one, other concatenations
will not be used. Note that, if duplicate names exist in different concatenations, the
user can decide which one is to be executed by determining the sequence of the
concatenations.

5.13The STEPLIB STATEMENT

The STEPLIB statement identifies the program library (load library) where the
program to be executed for the step resides. It can be placed anywhere after the
EXEC statement.

Page 52 of 80
(Company Confidential)

JCL

E.g. 1:

//DA0001TA JOB,LA2719,……
//s1 EXEC PGM=PROGA
//STEPLIB DD DSN=DA0001T.LIB.LOADLIB,DISP=SHR
//S2 EXEC PGM=PROGB
//STEPLIB DD DSN=DA0001T.LIB.LOADLIB1,DISP=SHR

Explanation: Program PROGA is expected to reside in DA0001TA.LIB.LOADLIB
as a member of the library. If not found, will search certain predefined libraries and
the S806-04 ABEND failure occurs.

E.g. 2:

//DA0001TA JOB,LA2719,……
//JOBLIB DD DSN=DA0001T.LIB.LOADLIB1,DISP=SHR
//S1 EXEC PGM=PROGA
//S2 EXEC PGM=PROGB
//STEPLIB DD DSN=DA0001T.LIB.LOADLIB,DISP=SHR
//S3 EXEC PGM=PROGC

A STEPLIB DD statement has the effect of negating the JOBLIB DD statement for a
particular step.

5.14STORAGE DUMP

When a step encounters an ABEND failure, it is often advantageous to request a
virtual storage dump, which can then be helpful in determining the cause of an
ABEND. To request a storage dump, one of the following three DD statements must
be included in the step:

• A SYSUDUMP DD statement
• A SYSMDUMP DD statement
• A SYSABEND DD statement

//SYSUDUMP DD SYSOUT=*

All virtual storage allocated to your program i.e. user region of job’s address space. It
is a formatted dump. SYSUDUMP usually writes to sysout. It can, however, write to
a disk dataset, providing a way to preserve the SYSUDUMP information for later
viewing and analysis.

//SYSUDUMP DD DSN=DA0001T.DUMPFILE,SPACE=(TRK,(0,5),RLSE),
// DISP=(,DELETE,CATLG),UNIT=SYSDA

No DCB is required.

Page 53 of 80
(Company Confidential)

JCL

Remark: SYSUDUMP DD statement is more often used.

//SYSMUDUMP DD SYSOUT=*

This is same as SYSUDUMP DD statement except for the fact that the dump is
unformatted. This type of dump is very difficult to analyze unless it is saved on a disk
and then processed by the PRDUMP service aid. SYSMDUMP is seldom used.

//SYSABEND DD SYSOUT=*

When a SYSUDUMP DD statement is included in a step which ABEND’s, a
formatted virtual storage dump will be provided. This dump will also include
information about the failed step, as well as most of the MVS storage-resident
information, which is of no use to the average user. SYSABEND is intended for
system programmer.

Remark:
1 If neither a SYSUDUMP nor a SYSMDUMP nor a SYSABEND statement is

coded within a JCL of an ABENDing step, a small amount of information is
provided. This information is seldom useful in resolving the problem that caused
the ABEND failure.

2 If more than one of the above statements is included in the JCL of a step, only the
last one will be used. The previous ones will be ignored.

//S1 EXEC PGM=ASS1
//SYSABEND DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

 Note that SYSUDUMP will be in use.

Page 54 of 80
(Company Confidential)

JCL

6 PROCEDURE
• There are two types of procedures:

- Cataloged Procedures
- Instream Procedures

• CATALOGED PROCEDURE is a member of a PDS, which is often referred to as
procedure library, or just PROCLIB

• INSTREAM PROCEDURES is contained within job's input stream.

Invoking a procedure

//pr exec abc
Or

//pr exec PROC=abc

Restrictions

- Max 255 steps

• The following are not permitted to reside in a procedure:

- JOB Statement
- An EXEC statement invoking a procedure
- JOBLIB
- JOBCAT
- DD * or DATA
- // Null statement
- A PEND statement (used in Instream procedures)

Common Rules for EXEC & DD Statement to Override for JCL Procedures

• Only the contents of the parameter field of an EXEC, DD or OUTPUT statement
can be overridden

• A parameter can be replaced, added or nullified

• When replacing an existing parameter, the overriding parameter must be specified
in its complete format. DCB is an exception

• An overriding parameter replaces the same parameter, if it exists. It is added to
the statement if it does not exist

• A syntactical JCL error inside a procedure cannot be corrected by overriding the
erroneous parameter

Page 55 of 80
(Company Confidential)

JCL

6.1 Rules for EXEC statement overriding

• To override an EXEC parameter, " parameter.stepname=value" must be coded
when adding or replacing a parameter, and "parameter.stepname=" must be coded
when nullifying a parameter

• The PGM parameter cannot be overridden

• All overriding EXEC parameters must be coded in the EXEC statement that
invokes the procedure

• All overrides to EXEC parameters for a step must be completed before overriding
parameters in a subsequent step. Within a particular step the sequence of
overriding parameters is not important

• An EXEC statement can be neither added nor removed by means of overriding

6.2 Rules for DD statement overriding

• To override any parameter in a DD statement an independent DD statement must
be supplied in the following format:

 //stepname.ddname DD overriding parameters

• To override any parameters in an concatenation other than the first one, the
following must be coded:

 //stepname.ddname DD
 // DD
 // .
 // .
 // DD overriding parameters

• To add an entire DD statement

 // stepname.ddname DD complete parameter field must be coded.

• The sequence of overriding DD statements must be the same as the sequence of
the corresponding overridden statements. The sequence of overriding parameters
is not important, except for those which are positional

• An additional DD statement must be the last one in a step's overriding statements.
When several additional DD statements are supplied their relative sequence is not
important, unless referbacks are used

• A DD statement cannot be removed by means of overriding

Page 56 of 80
(Company Confidential)

JCL

Procedure LAM
//S1 EXEC PGM=ED, PARM=(A,B,C,E),
// REGION=900K, TIME = (5,30)
//STEPLIB DD DSN=DEV.LOADLIB,DISP=SHR
//IN1 DD DSN=USER1.FILE2,DISP=SHR
//IN2 DD DSN=USER1.FILEX,DISP=OLD
// UNIT=TAPE, VOL=SER=000101
//REP DD SYSOUT =*,
//OUT DD DSN=USER1.PLA,DISP=(,CTLG,DELETE),
// UNIT=SYSDA, VOL=SER=BS3003,
// SPACE=(CYL,(20,5)),DCB=(BLKSIZE=4000,
// LRECL=80, RECFM=FB)

Required in step S1:

a) PARM must be (A,B,C,D) and TIME nullified
b) In IN1, DSN must be USER1.FILE3
c) IN2 must retrieve USER1.FILEX as a cataloged dataset
d) In DD statement OUT, BLKSIZE must be 23440

//S2 EXEC PGM=FORM,REGION=900k
//INA DD DSN=USER1.PLA,DISP=SHR
// DD DSN=USER1.F226,DISP=SHR
// DD DSN=USER1.F232,DISP=SHR
// DD DSN=USER1.F118,DISP=SHR
//OUTA DD DSN=USER.F323,DISP=(,CATLG,DELETE),
// UNIT=TAPE, VOL=SER=001110,
// DCB=BLKSIZE=32700, LRECL=100,
// RECFM=FB)
//PRNT DD SYSOUT=*

Required in Step S2:

a) COND = (0,LT) must be coded
b) In INA DSN in the third concatenation must be USER1.F228
c) In DD statement OUTA, UNIT be SYSDA
d) An entire DD statement:

//STEPLIB DD DSN=DEV.LOADLIB,DISP=SHR
Must be added.

//S3 EXEC PGM=REPO,REGION = 400K, COND=(0,LT)
//IN3 DD DSN=USER1.F333, DISP=OLD
//OUT3 DD DSN=USER1.F111,DISP=(,CTLG,,DELETE,
// UNIT=SYSDA, VOL=SER=DEV012,
// SPACE=(CYL,(50,15),RLSE),
// DCB=(BLKSIZE=23440,LRECL=80,RECFM=FB)
//PRNT DD SYSOUT=*
//

Page 57 of 80
(Company Confidential)

JCL

Required in Step S3:

a) EVEN must be added to the COND parameter
b) In DD statement OUT3, RLSE must be removed from the SPACE parameter and

VOL parameter must be nullified.

The final output would be

//ZP EXEC LAM PARM.S1=(A,B,C,D),TIME.S1=,COND.S2=(0,LT),
//INA COND.S3=((0,LT),EVEN)
//S1.IN1 DD DSN=USER1.FILE3
//S1.IN2 DD VOL= ALTERNATIVE: VOL=SER=
//S1.OUT DD DCB=BLKSIZE=23440
//S2.INA DD
// DD
// DD DSN=USER1.F228
//S2.OUTA DD UNIT=SYSDA
//S2.STEPLIB DD DSN=DEV.LOADLIB,DISP=SHR
//S3.OUT3 DD SPACE=(CYL,(50,15)),VOL=

Some typical examples

Example 1

//S1 EXEC PGM=ONE
//OUT1 DD DSN=U1.S1,
// DISP=(,CTLG, DELETE),
// UNIT=TAPE,
// DCB=(BLKSIZE=32700)

Required
OUT1 must be dummied

Override
//S1.OUT1 DD DUMMY

Regardless of the contents, no other parameters are needed.

Example 2:

//S1 EXEC PGM=ONE
//IN1 DD DSN=U1.B1,DISP=SHR
// DD DSN=U1.B2,DISP=SHR
// DD DSN=U1.B3,DISP=SHR

Required
Second concatenation of IN1 must be dummied.

Page 58 of 80
(Company Confidential)

JCL

Proposed overriding DD statement.
//S1.IN1 DD
// DD DUMMY

Overriding and dummying the second concatenation will cause the third
concatenation to also act as DUMMY. The desired result can be accomplished
by the following:

Override
//S1.IN1 DD
// DD DSN=U1.B3
// DD DUMMY

Example 3:

//S1 EXEC PGM=ONE
//CNTL DD DSN=U1.CNTLIB(S1), DISP=SHR

Required
DD statement CNTL must be //CNTL DD *

Override
//S1.CNTL DD *

Regardless of the contents DD * will override all.

Example 4:

//S1 EXEC PGM=ONE
//OUT4 DD DSN=U1.D1,DISP=NEW
// DISP=SYSDA,VOL=SER=TEST26,
// SPACE=(TRK,(500,50)),
// DCB=(BLKSIZE=23400,RECL=100,RECFM=FB)

Required
DCB parameter must be eliminated

Override
//S1.OUT4 DD DCB=(BLKSIZE=,,LRECL=,RECFM=)

6.3 Symbolic Parameters and Symbolic Overrides

• Symbolic overrides can be used only when symbolic parameters have been coded
inside the procedure

• A symbolic parameter is a name preceded by an ampersand (&)

• A symbolic parameter can be coded in place of any parameter, part of a parameter
in the parameter field of an EXEC, DD or OUTPUT statement

Page 59 of 80
(Company Confidential)

JCL

Symbolic parameter

Example 1:

Procedure BLTX
//S1 EXEC PGM=BL,HQ=DA0001T
//IN DD DSN=&HQ..INFILE,,DISP=SHR
//OUT DD DSN=&HQ..OUTFILE,DISP=(,CATLG,DELETE),
// UNIT=SYSDA, DCB=BLKSIZE=32700

//PSK EXEC PROC=BLTX,HQ=PROD

- First period works as delimiter

Example 2:

Procedure BLTX

//S1 EXEC PGM=BL,HQ=’DA0001T.’
//IN DD DSN=&HQ.INFILE,DISP=SHR
//OUT DD DSN=&HQ.OUTFILE,DISP=(,CATLG,DELETE)
// UNIT=SYSDA,DCB=(BLKSIZE=32700)

//PSK EXEC BLTX,HQ='PROD.'

Symbolic overriding

Rules for Symbolic overriding

• An EXEC statement keyword (TIME, REGION etc.) cannot be used as a symbolic
parameter

• A symbolic override in either the EXEC or PROC statement that has no
corresponding parameter in the procedure will result in a 'SYMBOL NOT
DEFINED' JCL error

• If a symbolic and a regular override conflict, the regular override always prevails

• A symbolic parameter, which is immediately followed by an alphabetic, numeric
or national character must have a period at its end

• A symbolic parameter can be coded many times in a procedure. When
substitution occurs, all the occurrences will receive the same value

• When nothing must be substituted for a symbolic parameter, "symbolic-
override=“ must be coded in the EXEC or PROC statement

Page 60 of 80
(Company Confidential)

JCL

Procedure SWP
/ABC PROC R=800K, Q=AUX, U=TAPE
//S1 EXEC PGM=P2, REGION=&R
//IN DD DSN=&Q..FILEX, DISP=SHR
//OUT DD DSN=&Q..FILEY, DISP=(,CATLG,DELETE),
// UNIT=&U

//A EXEC PROC=SWP,Q=MAX

Substitution results in

//S1 EXEC PGM=P2, REGION=800K
//IN DD DSN=MAX.FILEX,DISP=SHR
//OUT DD DSN=MAX.FILEY,DISP=(,CATLG,DELETE),
// UNIT =TAPE

6.4 The PROC statement

• The purpose of the PROC statement is to contain symbolic override defaults

• When a procedure is executed, the system will substitute symbolic parameters
using symbolic overrides coded in the EXEC statement

• For those symbolic overrides not found in the EXEC statement, the default
symbolic overrides in the PROC statement will be used

6.5 In-stream Procedures

• An in-stream procedure is a part of a job's input stream and exists only for the
duration of the job

• The PROC statement in an in-stream procedure is mandatory and serves two
functions -
a) It signals the beginning of in-stream procedure
b) It contains default symbolic overrides.

• The PEND statement must be coded in an in-stream procedure to provide a
delimiter

Remark:
1) A PROC statement in a catalogued procedure is optional. The only reason it is

required is to contain default symbolic overrides.

Page 61 of 80
(Company Confidential)

JCL

Example 1:

//DA0001TA JOB LA2719,PCS,MSGCLASS=A,,MSGLEVEL=(1,1),
// N OTIFY=DA0001T
//* Instream procedure
//PROCBR14 PROC
//S1 EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=*
//DD1 DD DSN=DA0001T.TEMP,DISP=(OLD,DELETE,DELETE)
// PEND
//*
//STEP1 EXEC PROC=PROCBR14
//S1.DD1 DD DSN=DA0001T.TEMP1
// DISP=(,CATLG,DELETE), UNIT=SYSDA,
// SPACE=(TRK,(2,1)),
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=800)
//

Example 2:

//DA0001TA JOB LA2719,PCS,MSGCLASS=A,,MSGLEVEL=(1,1),
// N OTIFY=DA0001T
//* Instream procedure with symbolic parameters
//PROCBR14 PROC USRID=DA0001T,DATANAME=TEMP
//S1 EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=*
//DD1 DD DSN=&USRID..&DATANAME,DISP=(OLD,DELETE,DELETE)
// PEND
//*
//STEP1 EXEC PROC=PROCBR14,DATANAME=EMPFILE
//S1.DD1 DD DSN=DA0001T.EMPFILE
// DISP=(,CATLG,DELETE), UNIT=SYSDA,
// SPACE=(TRK,(2,1)),
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=800)
//

Page 62 of 80
(Company Confidential)

JCL

7 UTILITY
7.1 IEFBR14 UTILITY

This utility is commonly used to delete, allocate and uncatalog a dataset.

Example 1:

//DELETE EXEC PGM=IEFBR14
//* TO DELETE A FILE
//SYSPRINT DD SYSOUT=*
//DD1 DD DSN=DA0001T.EMPLOYEE,
// DISP=(MOD,DELETE,DELETE),
// UNT=SYSDA, SPACE=(TRK,0)

Example 2:

//CREATE EXEC PGM=IEFBR14
//*TO ALLOCATE A NEW FILE
//SYSPRINT DD SYSOUT=*
//DD1 DD DSN=DA0001T.EMPLOYEE,
// DISP=(NEW,CATLG,DELETE),
// UNIT=SYSDA,
// SPACE=(TRK,(2,1)),
// DCB=(BLKSIZE=800,LRECL=80,
// RECFM=FB,DSORG=PS)

An excerpt of a code illustrating, the deletion of a dataset, before COBRUN1 step is
executed.

//DA000ITA JOB LA2719,PCS,NOTIFY=DA0001T,
// MSGCLASS=X, MSGLEVEL=(1,0)
//DELETE EXEC PGM=IEFBR14
//LOGFILE DD DSN=DA0001T.MYFILE2,DISP=(MOD,DELETE,DELETE),
// SPACE=(TRK,0),UNIT=SYSDA
//*
//COBRUN1 EXEC PGM=ASS2
//STEPLIB DD DSN=DA00021T,SHEELA.LOADLIB,DISP=SHR
//INFILE DD DSN=DA0001T, EMPLOYEE,DISP=SHR
//OUTFILE DD DSN=DA0001T.MYFILE2,
// DISP=(NEW,CATLG,DELETE),
// DCB=(LRECL=80, DSORG=PS,BLKSIZE=80, RECFM=FB),
// VOL=SER=BS3011,
// SPACE=(TRK, (5,1))
//SYSOUT DD SYSOUT=*
//

Page 63 of 80
(Company Confidential)

JCL

7.2 IEBGENER UTILITY

• This utility is commonly used to copy, concatenate and to empty sequential
datasets

//DA0001TA JOB LA2719, PCS, NOTIFY=DA0001T,
// MSGCLASS=X
//**
//* USING THE IEBGENER UTILITY TO MERGE DATASETS
//* SYSUT1 PROVIDING THE INPUT AND SYSUT2 BEING
//* THE OUTPUT
//**
//CPYSTEP EXEC PGM=IEBGENER
//SYSUT1 DD DSN=DA0001T.INDATA1, DISP=SHR
//SYSUT2 DD DSN=DA0001T.NEW,DISP=MOD
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*
//

//DA0001TA JOB LA2719,PCS,NOTIFY=DA0001T,
// MSGCLASS=X
//**
//* USING THE IEBGENER UTILITY TO CONCATENATE DATASETS
//* SYSUT1 PROVIDING THE INPUT AND SYSUT2 BEING
//* THE OUTPUT
//**
//CPYSTEP EXEC PGM=IEBGENER
//SYSUT1 DD DSN=DA0001T.INDATA1,DISP=SHR
// DD DSN=DA0001T.INDATA3,DISP=SHR
//SYSUT2 DD DSN=DA0001T.MYOUT,
// DISP=(NEW, CATLG, DELETE),
// UNIT=SYSALLDA,
// SPACE=(TRK,(5,1),RLSE)
//SYSIN DD DUMMY
//SYSPRINT DD SYSOUT=*

Page 64 of 80
(Company Confidential)

JCL

 //DA0001TA JOB LA2719,PCS,NOTIFY=DA0001T,
 // MSGCLASS=X
 // **
 //* USING THE IEBGENER UTILITY TO EMPTY EXISTING DATASET
 //**
 //CPYSTEP EXEC PGM=IEBGENER
 //SYSPRINT DD SYSOUT=*
 //SYSUT1 DD DUMMY, DCB=(BLKSIZE=800,
 // LRECL=80, RECFM=FB)
 //SYSUT2 DD DSN=DA0001T.MYOUT,DISP=SHR
 //SYSIN DD DUMMY
 //

7.3 SORT UTILITY

• The utility is commonly used to sort data, copy selective data, remove duplicates,
and change data throughout the file

• This is the utility provided by MVS

Usage: It reorders the Physical Sequential dataset as per requirement on given
field(s). These fields are called control fields or key fields.

Working: It assumes that all input records are out of sequence and it puts them in
sequence you request.

E.g. Employee data is sorted in the sequence of Emp. No., Emp. Name or Salary etc.

Sort utility

Syntax

Sort fields = (position, length, format, sequence) or
Sort fields = (position, length, sequence….), format = format

This syntax is used if all the fields on which the dataset to be sorted are of same type.

position: Location of the 1st byte of the key field, in the input record

length: Length in bytes of the key field. Sum of all key fields (their lengths) should
not exceed 4092

Format: Two characters code that identifies the format (type) of the data

Sequence: A - Ascending
 D - Descending

Page 65 of 80
(Company Confidential)

JCL

Merge Utility

• This assumes that records are in proper sequence but at different locations i.e. in
different files. It merges those files into one, in the given sequence.

E.g.: General ledger transactions for different months, in the sequence of a/c no to be
merged in one file.

Remark: Many of the examples in this handout refer to EMPMAST data set in
Appendix A.

 DFSORT:
DFHSORT is a member of IBM’s Data Facility family of products. The DFSORT
licensed program is a high-performance data arranger developed by IBM for MVS
users.

With DFSORT, you can sort, merge, and copy data sets. You can use it to aid
complex tasks such as taking inventory or running a billing system. You can also use
DFSORT’s record-level editing capability to perform data management tasks.

Sorting Data Sets

You can use DFSORT to rearrange the records in your datasets. Sorting is arranging
records in either ascending or descending order within a file.

The fields in the records can be in any IBM System/370 format (for example EBCDIC
character, decimal, and binary)

You can sort data in several different formats. Figure shows the most common data
formats and the codes you use to specify them.

Data Format Code
EBCIDIC (Character) CH
Binary (Numeric) BI
Zoned Decimal (Numeric) ZD
Packed Decimal (Numeric) PD

Merging Data Sets

You can also use DFSORT to merge data sets. DFSORT merges data sets by
combining two or more files of sorted records to form a single data set of sorted
records.

You can merge up to 16 data sets. The data sets you merge must be previously sorted
into the same order (ascending or descending order).

• The JCL needed for a merge is the same as that for a SORT, with the following
exceptions

Page 66 of 80
(Company Confidential)

JCL

You do not use the SORTWKnn statement
Instead of SORTIN DD statement, you use SORTINnn DD statements to define
the input datasets. The SORTINnn DD statements name the input datasets to be
merged and tell how many datasets are to be merged. The value nn in SORTINnn
is a number from 0 to 16,indicating the number of datasets to be merged.

Copying Data Sets

DFSORT can also copy data sets without any sorting or merging taking place. You
copy data sets in much the same way that you sort or merge them.

What else can you do with DFSORT?

While sorting, merging, or copying data sets, you can also:

• Select a subset of records from an input data set. You can include or omit
records that meet specified criteria

• Reformat records, add or delete fields, and insert blanks, constants, or binary
zeros. For example you can make a report more legible by inserting blank
characters to separate fields

• Sum the values in selected records while sorting or merging (but not while
copying)

• Alter the collating sequence when sorting or merging records (but not while
copying). For example, you can have the lowercase letters collate after the
uppercase letters

Creating and Running DFSORT Jobs

Processing data sets with DFSORT involves two steps:

1. Creating a DFSORT job
2. Running a DFSORT job.

You can run a DFSORT job by invoking processing in a number of ways:

• With a JCL EXEC statement using the name of the program or the name of
the cataloged procedure

• With interactive panels supported under ISPF and ISMF
• Within programs written in COBOL, PL1, or basic Assembler language

Remarks: JCL-invoked means that the DFSORT program is initiated by JCL
EXEC statement. The phrase dynamically invoked means that the DFSORT
program is initiated from another program.

Page 67 of 80
(Company Confidential)

JCL

The JCL statements you need for most jobs are described below:

//jobname JOB Signals the beginning of a job.

//stepname EXEC Signals the beginning of a job step and tells the operating
system what program to run.

 //stepname EXEC PGM=SORT

//STEPLIB DD defines the library containing DFSORT program. If your
DFSORT program is in system library, you can omit the STEPLIB statement.

//SYSOUT DD defines the output data set for messages.

//SORTIN DD defines the input data set.

//SORTWKnn DD defines a work storage data set for a sort. For most applications,
one work storage data set is sufficient. Increasing the number of work storage data
sets does not improve performance.

//SORTOUT DD defines the output dataset.

//SYSIN DD Control statements.

All the control information within SYSIN DD can be coded freely between column 2
and column 71.

Page 68 of 80
(Company Confidential)

JCL

SORT JCL 1

//DA0001TA JOB LA2719,PCS, NOTIFY=DA0001T,MSGCLASS=X
//***
//*SORT ON THE EMPLOYEE NAME IN ASCENDING ORDER
//***
//SRTSTEP EXEC PGM = SORT
//SYSIN DD *
 SORT FIELDS = (1,5,CH,A)
/*
//SORTIN DD DSN=DA0001T.EMPLOYEE,DISP=SHR
//SORTOUT DD DSN=DA0001T.OUTSORT,
// SPACE=(TRK,(1,1)),UNIT=SYSDA
//SORTWK01 DD SPACE=(CYL,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SORTMSG DD SYSOUT=*
//

Sorting by Multiple fields

You can further sort the records in the data set by specifying multiple control fields.
When you specify two or more control fields, you specify them in the order of greater
to lesser priority.

SORT JCL 2

//DA0001TA JOB LA2719,PCS, NOTIFY=DA0001T,MSGCLASS=X
//***
//*SORTS ON ASCENDING DEPTNO & DESCENDING ENAME
//***
//SRTSTEP EXEC PGM=SORT
//SYSIN DD *
 SORT FIELDS = (17,2,PD,A,2,6,CH,D)
/*
//SORTIN DD DSN=DA0001T.DEPT,DISP=SHR
//SORTOUT DD DSN=DA0001T.SORTOUT2,
// DISP=(NEW,CATLG,DELETE)
// SPACE=(TRK,(3,3)),UNIT = SYSDA
//SORTWK01 DD SPACE(CYL,(1,1)),UNIT=SYSDA
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SORTMSG DD SYSOUT=*
//

Page 69 of 80
(Company Confidential)

JCL

Copying Data Sets

With DFSORT you can copy data sets directly without performing a sort or merge.

You can use COPY with all of the other DFSORT control statements except SUM.
DFSORT can select and reformat the specific data sets you want to copy by using the
control statements covered later.

You can use SORT FIELDS=COPY or MERGE FIELDS=COPY or OPTION COPY
to produce the same results.

SORT JCL 3

//DA0001TA JOB LA2719,PCS, NOTIFY=DA0001T,MSGCLASS=X
//***
//
//***
//SRTSTEP EXEC PGM=SORT
//SYSIN DD *
 SORT FIELDS = COPY
/*
//SORTIN DD DSN=DA0001T.DEPT,DISP=SHR
//SORTOUT DD DSN=DA0001T.SORTOUT2,
// DISP=(NEW,CATLG,DELETE),
// SPACE=(TRK,(3,3)),UNIT = SYSDA
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SORTMSG DD SYSOUT=*
//

The JCL for a copy application is the same as for a sort, except that you do not use the
SORTWKnn DD statement.

Tailoring the Input Data Set with INCLUDE and OMIT

Often, you need only a subset of the records in a data set for an application. By
tailoring the data set, you can increase the speed of the sort, merge, or copy, The
fewer the records, the less time it takes to process them.

You tailor an input data set by:

• Using an INCLUDE control statement to collect wanted records
• Using an OMIT control statement to exclude unwanted records

Your choice of INCLUDE and OMIT depends on which is easier and more efficient
to write for a given application. Note that, INCLUDE and OMIT control statements
are mutually exclusive.

Page 70 of 80
(Company Confidential)

JCL

SORT JCL 4

TO COPY SELECTIVE DATA

a) INCLUDE COND copies data that matches the condition given for e.g. in this
case it will copy data where one character in 19th position equals 'M' or 'S'.

//DA0001TA JOB LA2719,PCS, NOTIFY=DA0001T,MSGCLASS=X
//***
//* SORTS ON THE INPUT FILE ON JOB AND SELECTS JOB BEGINNING WITH M
// OR S INTO A DATA SET
//**
//SRTSTEP EXEC PGM=SORT
//SYSIN DD *
 OPTION EQUALS
 INCLUDE COND = (19,1,CH,EQ,C'M', OR, 19, 1, CH, EQ, C 'S')
 SORT FIELDS = (19,6,A), FORMAT=CH
/*
//SORTIN DD DSN=DA0001T.INDATA3,DISP=SHR
//SORTOUT DD DSN=DA0001T.SORTOUT3,DISP=(NEW, CATLG,DELETE),
// SPACE=(TRK,(3,3)), UNIT = SYSDA,
// DCB=(BLKSIZE=800, LRECL=80, RECFM=FB,DSORG=PS)
//SORTWK01 DD SPACE=(TRK,(10,5)), UNIT=SYSDA
//SYSOUT DD SYSOUT=*
//

SORT JCL 5 (Sorts on Job and selects Jobs beginning with M and Deptno beginning
with 1)

//DA0001TA JOB LA2719,PCS, NOTIFY=DA0001T,MSGCLASS=X
//***
//*SORTS ON JOB INCLUDES JOBS BEGINNING WITH M AND DEPTNO
//*BEGINNING WITH 1
//**
//SRTSTEP EXEC PGM=SORT
//SYSIN DD *
 OPTION EQUALS
 INCLUDE COND=(19,1,CH,EQ,C'M',AND,51,1,CSF,EQ,1)
 SORT FIELDS = (19,6,A),FORMAT=CH
/*
//SORTIN DD DSN=DA0001T.INDATA3,DISP=SHR
//SORTOUT DD DSN=DA0021T.SORTOUT4,DISP=NEW,CATLG,DELETE),
// SPACE=(TRK,(3,3,)), UNIT = SYSDA,
// DCB=(BLKSIZE=800, LRECL=80, RECFM=FB,,DSORG=PS)
//SORTWK01 DD SPACE=(CYL,(1,1)),UNIT=SYSDA
//SYSOUT DD SYSOUT=*
//

Page 71 of 80
(Company Confidential)

JCL

SORT UTILITY

OMIT COND: INCLUDE and OMIT are mutually exclusive

Records which do not satisfy the condition are sorted and copies into the output
dataset

SORT JCL 6(Sorts on Job and omits Jobs beginning with M or S)

//DA0001TA JOB LA2719,PCS, NOTIFY=DA0001T,MSGCLASS=X
//**
//*SORTS ON JOB *OMITS JOBS BEGINNING WITH M OR S
//**
//SRTSTEP EXEC PGM=SORT
//SYSIN DD *
 OPTION EQUALS
 OMIT COND = (19,1,CH,EQ,C,'M',OR, 19,1,CH,EQ,C'S')
 SORT FIELDS = (19,6,A),FORMAT=CH
/*
//SORTIN DD DSN=DA0001T.INDATA3,DISP=SHR
//SORTOUT DD DSN=DA0021T.SORTOUT4,DISP=NEW,CATLG),
// SPACE=(TRK,(3,3,)), UNIT = SYSDA,
// DCB=(BLKSIZE=800, LRECL=80, RECFM=FB,DSORG=PS)
//SORTWK01 DD SPACE=(CYL,(1,1)),UNIT=SYSDA
//SYSOUT DD SYSOUT=*
//

SORT JCL 7

//DA0001TA JOB LA2719,PCS, NOTIFY=DA0001T,MSGCLASS=X
//* Merges fields beginning with column 110 having length 5
//* INDATA1 and INDATA2 are sorted on the control field
//SRTSTEP EXEC PGM=SORT
//SORTIN01 DD DSN=DA0001T.INDATA1,DISP=OLD
//SORTIN02 DD DSN=DA0001T.INDATA2,DISP=OLD

//SORTOUT DD DSN=DA0001T.SORTOUT4,DISP=(NEW,CATLG),
// SPACE=(TRK,(3,3,)), UNIT = SYSDA,
// DCB=(BLKSIZE=800, LRECL=80, RECFM=FB,DSORG=PS)
//SYSOUT DD SYSOUT=*
//SYSIN DD *
 MERGE FIELDS = (110,5,A),FORMAT=CH
/*

Page 72 of 80
(Company Confidential)

JCL

You can select from the following comparison operators:

C

EQ Equal to
NE Not Equal to
GT Greater than
GE Greater than or Equal to
LT Less than
LE Less than or equal to

DFSORT uses the following rules for padding and truncation. Padding adds fillers in
data, usually zeros or blanks. Truncation deletes or omits a leading or trailing portion
of a string.
• In a field-to-field comparison, the shorter field is padded as appropriate (with

blanks or zeros)
• In a field-to-constant comparison, the constant is padded or truncated to the length

of the field. Decimal constants are padded or truncated on the left. Character and
hexadecimal constants are padded or truncated on the right

Allowable Comparisons for INCLUDE
and OMIT

The following table shows field-to-field and field-to-constant comparisons.

Field
Format

BI CH ZD PD

BI  
CH  
ZD  
PD  

Field
Format

Character
String

Hexadecimal
String

Decimal
String

BI  
CH  
ZD 
PD 

Writing Constants

The formats for writing character strings, hexadecimal strings and decimal numbers
are shown below.

Character Strings

The format for writing a character string is:
C’x…..x’

Where x is an EBCDIC character. For example, C’Sheela’.

Page 73 of 80
(Company Confidential)

JCL

If you want to include a single apostrophe in the string, you must specify it as two
single apostrophes. For example, O’NEILL must be specified as C’O’’NEILL’.

Hexadecimal Strings

The format for writing a hexadecimal string is:

X’yy……yy’
Where yy is a pair of hexadecimal digits. For example X’C1C2’ is equivalent to
C’AB’

Decimal Strings

The format for writing a decimal number is:
n…..n or +n…..n or –n…n
where n….n is a decimal digit. Examples are 24, +24, and –24.
Decimal number must not contain commas and decimal points.

Summing Records-the SUM statement

Suppose that the TRG dept wants to know the total salary of all the trainers. You can
tailor the file to include only records for the TRG department by using the INCLUDE
statement, and sum the salaries by using by using the SORT and SUM statements.

On the SUM control statement, you specify one or more numeric fields that are to be
summed whenever records have equal control fields (control fields are specified on
the SORT statement). The numeric fields can be in binary, packed decimal, or zoned
decimal format.

When you sum records, keep in mind that two types of fields are involved:
• Control fields, which are specified on the SORT statement
• Summary fields, which are specified on the SUM statement

Writing the SUM Statement

SUM FIELDS=(location, length, data-format,...)

The INCLUDE, SORT, and SUM statements are shown below:
 INCLUDE COND=(26,4,CH,EQ,C’TRG ‘)
 SORT FIELDS=(26,4,CH,A)
 SUM FIELDS=(35,5,BI)

When the salaries are summed, the final sum appears in the SALARY field of one
record and the other records are deleted. The default is for records with equal control
fields to appear in the original order. When summing records keeping the original
order, DFSORT chooses the first record to contain the original sum.

Remark: Some of the fields in your summation might not be meaningful, such as the
employee number field. You could use OMIT statement to omit this field. There are
two other ways to leave out fields that are not meaningful.

Page 74 of 80
(Company Confidential)

JCL

Suppressing Records with Duplicate Control Fields.

Apart from summing values, you can use SUM to delete records with duplicate
control fields. By specifying FIELDS=NONE on the SUM statement, one can
eliminate records with duplicate control fields.

E.g.: List all the distinct departments in ascending order.
 SORT FIELDS=(25,4,CH,A)
 SUM FIELDS=NONE

Handling Overflow

When a sum becomes larger than the space available for it, overflow occurs. If
overflow occurs, the two records involved are left unsummarized. That is, the
contents of the records are left undisturbed, neither record is deleted, and the records
are still available for summarization. Overflow does not prevent further summary. In
some cases, you can correct overflow by padding the summary fields with zeros using
the INREC control statement.

Reformatting Records

You can reformat records in your data sets by using the OUTREC and INREC control
statements. With OUTREC and INREC, you can:
• Delete fields
• Reorder fields
• Insert separators (blanks, zeros, or constants)

The difference between the DFSORT control statements is that OUTREC reformats
records after they are sorted, copied, or merged, whereas INREC reformats records
before they are sorted, copied, or merged.

INREC and OUTREC perform the same functions. When deciding which to use,
remember their processing order. In general:
• If you are deleting fields, try to use INREC because shorter records take less time

to sort, merge, or copy (INREC reformats the records before they are processed)
• If you are going to insert separators, use OUTREC because OUTREC inserts

separators into the records after they are processed
• If you are reordering fields, you can use either control statements because

reordering fields does not affect the record length

Note: If you use INREC or OUTREC to change the record length, be sure to specify
the final record length on the SORTOUT DD statement using the DCB parameter.
The final length is either:
• The INREC length if you are using just INREC
• The OUTREC length if you are using just OUTREC or both INREC and

OUTREC

Page 75 of 80
(Company Confidential)

JCL

Reformatting Records Using the OUTREC Statement

Using the OUTREC statement, you can delete all the fields that are not needed for the
application, in other words fields whose contents are not meaningful in a summation
records. Note that on the OUTREC statement you do not specify the data format.

 SORT FIELDS=(26,4,CH,A)
 SUM FIELDS=(35,5,BI)
 OUTREC FIELDS=(26,4,35,5)

Because the record length changed, the new length must be specified on the
SORTOUT DD statement. For example:

//SORTOUT DD DSN=DA0001T.SORTOUT,DISP=(NEW,CATLG,DELETE),
// SPACE=(TRK,(1,1)),UNIT=SYSDA,
// DCB=LRECL=9

Reordering Fields to Reserve Space

The fields always appear in the order in which you specify them. Therefore, if you
want to the salary to appear before the department, just reverse the order in the
OUTREC statement.

 SORT FIELDS=(26,4,CH,A)
 SUM FIELDS=(35,5,BI)
 OUTREC FIELDS=(35,5,26,4)

Inserting Binary Zeros

Assume you want to reformat the records to include a new 4-byte binary field after
the salary field (beginning at byte 39). In this case, you can insert binary zeros as
placeholders for the new field (to be filled in with data at later date).

To insert the zeros, write 4Z after the last field:

 SORT FIELDS=(26,4,CH,A)
 SUM FIELDS=(35,5,BI)
 OUTREC FIELDS=(26,4,35,5,4Z)

This time, you must specify on the SORTOUT DD statement the new record length is
13 bytes.

You can insert binary zeros before, between, or after fields. You can use Z or 1Z to
specify a single binary zero.

Inserting Blanks

If an output data set contains only character data, you can print it by writing the
SORTOUT DD statement as follows:
//SORTOUT DD SYSOUT=*

Page 76 of 80
(Company Confidential)

JCL

You can make the printout more legible by the OUTREC statement to separate the
fields with blanks and to create margins. For example, you want to print just the
employee number and employee name fields.

 SORT FIELDS=(1,4,ZD,A)
 OUTREC FIELDS=(10X,1,4,,4X,5,20)

To insert blanks, specify nX.

You can insert blanks before, between, or after fields. You can use X or 1X to specify
a single space.

Inserting Constants

In addition to making the printout more legible, OUTREC can also be used to set up a
report format by inserting constants. The formats for writing constants are shown
below:

Character Strings

The format for writing a character string is:

C’x…..x’
Where x is an EBCDIC character. For example, C’Sheela’

The format for writing a character string repetition is:

nC’x…..x’
Where n can be from 1 to 4095; n repetitions of the character string constant (C’x…
x’) are inserted into the reformatted input records. If n is omitted, 1 is used instead.

If you want to include a single apostrophe in the string, you must specify it as two
single apostrophes. For example, O’NEILL must be specified as C’O’’NEILL’.

Hexadecimal Strings

The format for writing a hexadecimal string is:

X’yy……yy’
Where yy is a pair of hexadecimal digits. For example X’C1C2’ is equivalent to
C’AB’

The format for writing a hexadecimal string repetition is:

nC’yy…..yy’
where n can be from 1 to 4095; n repetitions of the hexadecimal string constant
(X’yy…yy’) are inserted into the reformatted input records. If n is omitted, 1 is used
instead.

Page 77 of 80
(Company Confidential)

JCL

Setting Up the Report Format

The statement for setting up the report is shown below:
 OPTION COPY
 OUTREC FIELDS=(11:C’THE EMPLOYEE NUMBER IS ‘,1,4,
 30:C’THE EMPLOYEE NAME IS ‘,5,20,4X,25,4)

Reformatting Records Using the INREC Statement

The INREC statement has the same format as the OUTREC statement.
 INREC FIELDS=(26,4,35,5)
 SORT FIELDS=(1,4,4,CH,A)
 SUM FIELDS=(5,5,BI)

Because INREC reformats the records before they are sorted, the SORT and SUM
statements must refer to the reformatted records, as they will appear in the output data
set.

Preventing Overflow Summing Values
In some cases, you can prevent overflow by using INREC to pad summary fields with
zeros. However, this method cannot be used for negative fixed-point binary data,
because padding with zeros rather than with ones would change the sign.

Padding Summary fields
If the summary fields were overflowing, you could pad each of them on the left with 4
bytes (binary fields must be 2, 4, or 8 bytes long)

 INREC FIELDS=(26,4,4Z,35,5)
 SORT FIELDS=(1,4,CH,A)
 SUM FIELDS=(5,10,BI)

You cannot use the OUTREC statement to prevent overflow, because it is processed
after summarization.

Page 78 of 80
(Company Confidential)

JCL

Processing Order Of Control Statements

The flowchart below shows the order in which control statements are processed (SUM
is processed at the same time as SORT or MERGE. It is not used with COPY.

Although you can write the statements in any order, DFSORT always processes the
statements in the order shown below.

Page 79 of 80
(Company Confidential)

INCLUDE
OMIT

INREC

SORT
MERGE
OPTION COPY
SUM

OUTREC

JCL

7.4 APPENDIX-A
(Bibliography/references)

Expert MVS/XA JCL -Mani Carathanassis

MVS/JCL -Doug Lowe

Page 80 of 80
(Company Confidential)

	1Introduction
	1.1What is JCL?
	1.2Processing of JCL

	2JCL Syntax
	2.1Syntax Rules

	3Job Statement
	3.1Accounting Information Parameter:
	3.2Programmer’s Name:
	3.3MSGLEVEL Parameter:
	3.4The MSGCLASS Parameter:
	3.5The Class Parameter:
	3.6The PRTY Parameter
	3.7The TIME Parameter
	3.8The REGION Parameter
	3.9The ADDRSPC Parameter
	3.10The NOTIFY Parameter
	3.11The RESTART Parameter
	3.12The TYPRUN Parameter

	4 The EXEC Statement
	4.1The PGM Parameter
	4.2The REGION Parameter
	4.3The TIME Parameter
	4.4The ADDRSPC Parameter
	4.5The ACCT Parameter
	4.6The PARM Parameter
	This parameter provides a way to supply data of limited size to the executing program

	4.7The COND Parameter
	4.7.1The COND Parameter in the JOB statement.
	4.7.2The COND Parameter in the EXEC statement

	5 The DD statement
	5.1The DSN Parameter
	5.2The DISP Parameter
	5.3The UNIT Parameter
	5.4The VOL Parameter
	5.5The SPACE Parameter
	5.6The LABEL Parameter
	5.7The DCB Parameter
	5.8Instream Data
	5.9The SYSOUT Parameter
	5.10Concatenation
	Concatenating Datasets

	5.11DUMMY Parameter
	5.12The JOBLIB DD Statement
	5.13The STEPLIB STATEMENT
	5.14STORAGE DUMP

	6 PROCEDURE
	6.1Rules for EXEC statement overriding
	6.2Rules for DD statement overriding
	6.3Symbolic Parameters and Symbolic Overrides
	6.4The PROC statement
	6.5In-stream Procedures

	7 UTILITY
	7.1IEFBR14 UTILITY
	7.2IEBGENER UTILITY
	7.3SORT UTILITY
	 DFSORT:
	Sorting Data Sets
	Merging Data Sets
	Copying Data Sets
	Comparison Operators
	Meaning
	Allowable Comparisons for INCLUDE and OMIT
	Character Strings
	C’x…..x’
	Hexadecimal Strings
	X’yy……yy’
	Decimal Strings
	Summing Records-the SUM statement
	Character Strings
	C’x…..x’
	nC’x…..x’
	Hexadecimal Strings
	X’yy……yy’
	nC’yy…..yy’

	7.4APPENDIX-A

